The Bayes factor Statistical properties and a diagnosis of its use in applied research Jorge N.Tendeiro tendeiro@hiroshima-u.ac.jp www.jorgetendeiro.com Slides at www.jorgetendeiro.com/talks/2023_HU_slides.pdf 06 January, 2023 Hiroshima University Today's talk - 1. NHST and its shortcomings (quickly). - 2. Introduction to the Bayes factor. - 3. Properties of the Bayes factor. - 4. X-ray of applications of Bayes factors in the literature. About me 2 / 44 ### Jorge N. Tendeiro Hiroshima University #### Officially: Office of Research and Academia-Government-Community Collaboration #### For research: Education and Research Center for Artificial Intelligence and Data Innovation #### Research interests: - Three-mode component analysis (PhD). - Item response theory, namely person-fit analysis. - Bayesian inference, namely the Bayes factor. - Various types of statistical modeling through collaborations. 1. NHST and its shortcomings (quickly) By $null\ hypothesis\ significance\ testing\ (NHST),\ I\ am\ referring\ to\ the\ blend^{1,2}\ between$ Fisher's significance testing and Neyman and Pearson's hypothesis testing. ¹Lehmann (1993). Misconceptions concerning NHST and its infamous p-value (and also the confidence interval) are well documented in the literature. 1,2,3,4,5,6,7 Various science fields are experiencing a crisis of confidence, as many researchers believe published results are not as well supported as claimed. Q: Whv? A: Among several other reasons (QRPs^{8,9}), due to overreliance on, and misuse of NHST and *p*-values. 10,11,12,13 ¹Belia et al. (2005). ² Falk and Greenhaum (1995). ³Goodman (2008) ⁴ Greenland et al. (2016). 5 Haller and Kraus (2002) ⁶Hoekstra et al. (2014). ^{7&}lt;sub>Oakes</sub> (1986). ⁸ John, Loewenstein, and Prelec (2012). ⁹Simmons, Nelson, and Simonsohn (2011). ¹⁰ Edwards, Lindman, and Savage (1963). ¹¹ Cohen (1994) ¹² Nickerson (2000) 13 Wagenmakers (2007). Here is a short, not exaustive, list:1,2 - $ightharpoonup p = probability of <math>\mathcal{H}_0$ being true. - $p < \alpha \Longrightarrow \mathcal{H}_0$ is false. - $p > \alpha \Longrightarrow \mathcal{H}_0$ is true. - $\blacksquare p > \alpha \Longrightarrow \mathcal{H}_0$ is likely true. - Relation between p and effect sizes. - $ightharpoonup p = probability of observed data under <math>\mathcal{H}_0$. - lacksquare $p<lpha\Longrightarrow$ the probability of a type I error is lpha. - lacksquare Statistically significant \simeq practically significant. - $ightharpoonup p > \alpha \Longrightarrow ext{effect size is small.}$ - ... Is the p-value an uninteresting probability? $$p = P \bigg[\underbrace{\text{observed data (or more extreme})}_{\text{data}} | \underbrace{\mathcal{H}_0}_{\text{theory}} \bigg].$$ Arguably, researchers care more about the reversed conditional probability: $$P(\mathsf{theory}|\mathsf{data}).$$ This leads us to the Bayes factor (well, only kind of). # 2. Introduction to the Bayes factor Bayes factors are being increasingly advocated as a better alternative to NHST. 1,2,3,4,5 ¹Jeffreys (1961). ²Wagenmakers et al. (2010). The Bayes factor^{1,2} quantifies the change from prior odds to posterior odds due to the data observed. Consider: - Two hypotheses (or models) to compare, for instance $\mathcal{H}_0: \theta = 0$ vs $\mathcal{H}_1: \theta \neq 0$. - \blacksquare Data D. Assume that either \mathcal{H}_0 or \mathcal{H}_1 must hold true. Then by Bayes' rule (i = 0, 1): $$p(\mathcal{H}_i|D) = \frac{p(\mathcal{H}_i)p(D|\mathcal{H}_i)}{p(\mathcal{H}_0)p(D|\mathcal{H}_0) + p(\mathcal{H}_1)p(D|\mathcal{H}_1)},$$ and dividing member by member leads to $$\underbrace{\frac{p(\mathcal{H}_0|D)}{p(\mathcal{H}_1|D)}}_{\text{posterior odds}} = \underbrace{\frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}}_{\text{prior odds}} \times \underbrace{\frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}}_{\text{Bayes factor, }BF_{01}}$$ ¹Jeffreys (1939). ²Kass and Raftery (1995). $$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}$$ For instance, $BF_{01} = 5$: The data are five times more likely to have occurred under \mathcal{H}_0 than under \mathcal{H}_1 . $$\underbrace{\frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}}_{\text{prior odds}} \times \underbrace{\frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}}_{\text{Bayes factor, }BF_{01}} = \underbrace{\frac{p(\mathcal{H}_0|D)}{p(\mathcal{H}_1|D)}}_{\text{posterior odds}}$$ For instance, $BF_{01} = 5$: After observing the data, my relative belief in \mathcal{H}_0 over \mathcal{H}_1 increased 5 times. This holds regardless of the initial relative belief of a rational agent: | Prior belief in | | Prior odds | \mathbf{BF}_{01} | Posterior odds | Posterior belief on | | |-----------------|-----------------|------------|--------------------|----------------|---------------------|-----------------| | \mathcal{H}_0 | \mathcal{H}_1 | | | | \mathcal{H}_0 | \mathcal{H}_1 | | 1/2 = .50 | 1/2 = .50 | 1 | 5 | 5 | 5/6 = .83 | 1/6 = .17 | | 2/3 = .67 | 1/3 = .33 | 2 | 5 | 10 | 10/11 = .91 | 1/11 = .09 | | 1/10 = .01 | 9/10 = .90 | 1/9 | 5 | 5/9 | 5/14 = .36 | 9/14 = .64 | $$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)} \in [0, \infty)$$: - $BF_{01} > 1$ Evidence in favor of \mathcal{H}_0 over \mathcal{H}_1 . - $BF_{01} = 1 \longrightarrow \text{Equal support for either model.}$ - $BF_{01} < 1 \longrightarrow \text{Evidence in favor of } \mathcal{H}_1 \text{ over } \mathcal{H}_0.$ Some qualitative cutoff labels have been suggested, for instance^{1,2,3}. Here's Kass and Raftery's classifier: | \mathbf{BF}_{01} | F_{01} Strength of evidence in favor of \mathcal{H}_0 | | | | |------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--| | 1 – 3 | Not worth more than a bare mention | | | | | 3 - 20 | Positive | | | | | 20 - 150 | Strong | | | | | > 150 | Very strong | | | | | For $BF_{01} <$ 1, use $BF_{10} = \frac{1}{BF_{01}}$ as strength of evidence in favor of \mathcal{H}_1 . | | | | | ¹ leffreys (1939). ² Kass and Raftery (1995). $$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}$$ For simpler models there are a few R packages available to assist with the computations: - BayesFactor¹ (mostly used). - bain.² - easystats.3 - bayestestR.4 - brms⁵ and rstanarm,⁶ relying on the bridgesampling⁷ package. There is also JASP, a handy and open source GUI. ¹Morey and Rouder (2022). ²Gu et al. (2021). ³ Liidecke et al. (2022) ⁴Makowski, Ben-Shachar, and Lüdecke (2019). ⁵ Bürkner (2021). ⁶ Goodrich et al. (2022) ⁷Gronau, Singmann, and Wagenmakers (2020). $$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}$$ Essentially, any two statistical models that make predictions are in theory eligible to be compared via the Bayes factor. We "just" need to evaluate each model's marginal likelihood: $$P(D|\mathcal{H}_i) = \int_{\Theta_i} \underbrace{p(D|\theta, \mathcal{H}_i)}_{\text{likelihood}} \underbrace{p(\theta|\mathcal{H}_i)}_{\text{prior}} d\theta.$$ There are various numerical procedures for this (e.g., 1,2,3,4,5,6,7,8), but recently bridge sampling has been of great practical use (in combination JAGS, Stan, or NIMBLE). ¹Berger and Pericchi (2001). ²Carlin and Chib (1995). ³Chen, Shao, and Ibrahim (2000). ⁴Gamerman and Lopes (2006). ⁵Gelman and Meng (1998). ⁶ Green (1995) ⁷Gronau et al. (2017). ⁸ Kass and Raftery (1995). # 3. Properties of the Bayes factor Bayes factor have been praised in many instances. 1,2,3,4,5 But, surprisingly, I could not find many sources with critical appraisals of the Bayes factor. I did exactly this a couple of years ago.⁶ 6 Tendeiro and Kiers (2019) ¹Dienes (2011). ² Dienes (2014). ³Masson (2011). ⁴Vanpaemel (2010). ⁵Wagenmakers et al. (2018). - 1. Bayes factors can be hard to compute. — - 2. Bayes factors are sensitive to within-model priors. - - 3. Use of 'default' Bayes factors. → - 4. Bayes factors are not posterior model probabilities. — - 5. Bayes factors do not imply a model is probably correct. -> - 6. Qualitative interpretation of Bayes factors. → - 7. Bayes factors test model classes. -> - 8. Bayes factors ←→ parameter estimation. → - 9. Bayes factors favor point \mathcal{H}_0 . \longrightarrow - 10. Bayes factors favor \mathcal{H}_a . \longrightarrow - 11. Bayes factors often agree with p-values. \rightarrow I will focus on *some* of the issues, for time purposes. The remaining are left as extra slides at the end (but we can discuss them too!!). ## 3. Properties of the Bayes factor Bayes factors are sensitive to within-model priors Very well known. 1,2,3,4,5 Due to fact that the likelihood function is averaged over the prior to compute the marginal likelihood under a model: $$P(D|\mathcal{H}_i) = \int_{\Theta_i} p(D|\theta, \mathcal{H}_i) p(\theta|\mathcal{H}_i) d\theta.$$ #### Example: Bias of a coin⁶ - \blacksquare $\mathcal{H}_0: \theta = .5$ vs $\mathcal{H}_1: \theta \neq .5$ - Data: 60 successes in 100 throws. - Four within-model priors; all Beta(a, b). | Prior | \mathbf{BF}_{10} | Lee & Wagenmakers (2014) | |-----------------------------------------------|--------------------|------------------------------------------| | Approx. to Haldane's prior ($a=.05, b=.05$) | 0.09 | 'Strong' evidence for \mathcal{H}_0 | | Jeffreys' prior ($a = .5, b = .5$) | 0.60 | 'Anecdotal' evidence for \mathcal{H}_0 | | Uniform prior ($a = 1, b = 1$) | 0.91 | 'Anecdotal' evidence for \mathcal{H}_0 | | An informative prior ($a=3,b=2$) | 1.55 | 'Anecdotal' evidence for \mathcal{H}_1 | ¹ Kass (1993). 3 Vanpaemel (2010). 5 Withers (2002). 2 Gallistel (2009). 4 Robert (2016). 6 Liu and Aitkin (2008). - Arbitrarily vague priors are not allowed because the null model would be invariably supported. - So, in the Bayes Factor context, vague priors will predetermine the test result!¹ - However, counterintuitively, improper priors might work.² - The problem cannot be solved by increasing sample size. 3,4,5 This behavior of Bayes factors is in sharp contrast with estimation of posterior distributions.^{6,7} ¹Morey and Rouder (2011). ²Berger and Pericchi (2001). ³Bayarri et al. (2012). ⁴Berger and Pericchi (2001). ⁵ Kass and Raftery (1995). ⁶Gelman, Meng, and Stern (1996). ⁷Kass (1993). Figure 1: Data: 60 successes in 100 throws. #### How to best choose priors then? - Some defend informative priors should be part of model setup and evaluation.¹ - Other suggest using default/reference/objective, well chosen, priors.^{2,3,4,5} - Perform sensitivity analysis. ¹Vanpaemel (2010). ²Bavarri et al. (2012). ## 3. Properties of the Bayes factor Bayes factors are not posterior model probabilities . Say that $BF_{01}=32$; what does this mean? After looking at the data, we revise our belief towards \mathcal{H}_0 by 32 times. **Q:** What does this imply concerning the probability of each model, given the observed data? **A:** On its own, nothing at all! Bayes factors are the multiplicative factor converting prior odds to posterior odds. They say nothing directly about model probabilities. $$\underbrace{\frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}}_{\text{prior odds}} \times \underbrace{\frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}}_{\text{Bayes factor}} = \underbrace{\frac{p(\mathcal{H}_0|D)}{p(\mathcal{H}_1|D)}}_{\text{posterior odds}}$$ - Bayes factors say nothing about the plausability of each model in light of the data, that is, of $p(\mathcal{H}_i|D)$. - Thus, Bayes factors = rate of change of belief, not belief itself.¹ - To compute $p(\mathcal{H}_i|D)$, prior model probabilities are needed: $$p(\mathcal{H}_0|D) = \frac{\mathsf{Prior} \ \mathsf{odds} \times BF_{01}}{\mathsf{1} + \mathsf{Prior} \ \mathsf{odds} \times BF_{01}}, \quad p(\mathcal{H}_1|D) = \mathsf{1} - p(\mathcal{H}_0|D).$$ #### **Example** - Anna: Equal prior belief for either model. - Ben: Strong prior belief for \mathcal{H}_1 . - $BF_{01} = 32$: Applies to Anna and Ben equally. | | $p(\mathcal{H}_0)$ | $p(\mathcal{H}_1)$ | BF_{01} | $p(\mathcal{H}_0 D)$ | $p(\mathcal{H}_1 D)$ | Conclusion | |------|--------------------|--------------------|-----------|----------------------|----------------------|------------------------| | Anna | .50 | .50 | 32 | .970 | .030 | Favors \mathcal{H}_0 | | Ben | .01 | .99 | | .244 | .756 | Favors \mathcal{H}_1 | ¹Edwards, Lindman, and Savage (1963). ## 3. Properties of the Bayes factor $\textbf{Bayes factors} \longleftrightarrow \textbf{parameter estimation}$ - Frequentist two-sided significance tests and confidence intervals (CIs) are directly related: The null hypothesis is rejected iff the null point is outside the CI. - This is not valid in the Bayesian framework.¹ **Figure 2:** Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0 : \mu = 0$ vs $\mathcal{H}_1 : \mu \sim N(0, \sigma_1^2 = 1)$. ¹Kruschke and Liddell (2018a). - There are many 'credible intervals', thus perhaps not surprising. - Estimation and testing seem apart in the Bayesian world. Some argue they address different research questions^{1,2,3,4}, but not everyone agrees.^{5,6} In particular, myself and Henk Kiers have recently argued that a unified Bayesian framework for testing and estimation is possible (https://psyarxiv.com/zbpmy/).⁷ ¹ Kruschke (2011). ²Ly, Verhagen, and Wagenmakers (2016). ³Wagenmakers et al. (2018). ⁴Kruschke and Liddell (2018a). ⁵Robert (2016). ⁶Bernardo (2012). ⁷Tendeiro and Kiers (2022). ## 3. Properties of the Bayes factor Bayes factors favor point \mathcal{H}_0 - NHST is strongly biased against the point null model \mathcal{H}_0 .^{1,2,3,4} - In other words, $p(\mathcal{H}_0|D)$ and p-values do not agree. (Yes, they are conceptually different!⁵) - The discrepancy worsens as the sample size increases. Figure 3: Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0: \mu = 0$ vs $\mathcal{H}_1: \mu \sim N(0, \sigma_1^2 = 1)$. ⁴Sellke, Bayarri, and Berger (2001). ¹Edwards, Lindman, and Savage (1963). ² Dickey (1977). ³Berger and Sellke (1987). ⁵ Gigerenzer (2018). - In this example, for n > 42 one rejects \mathcal{H}_0 under NHST whereas $BF_{10} < 1$ (indicating support for \mathcal{H}_0). - In sum: Bigger ESs are needed for the Bayes factor to sway towards \mathcal{H}_1 . But, how much bigger? **Figure 4:** ESs required by BF_{10} , based of Jeffreys (1961) taxonomy. Calibrate Bayes factors $\longleftrightarrow p$ -values?^{1,2} ¹Wetzels et al. (2011). ²Jeon and De Boeck (2017). ## 3. Properties of the Bayes factor Bayes factors favor \mathcal{H}_a - Unless \mathcal{H}_0 is exactly true, $n \to \infty \Longrightarrow BF_{01} \to 0$. - \blacksquare Thus, both BF_{01} and the p-value approach 0 as n increases. - It has be argued that this is a good property of Bayes factors (they are information consistent).¹ - \blacksquare However, BF_{01} does ignore 'practical significance', or magnitude of ESs.² #### Meehl's paradox: For true negligible non-zero ESs, data accumulation should make it easier to reject a theory, not confirm it.^{3,4} ¹Ly, Verhagen, and Wagenmakers (2016). ³Meehl (1967). ²Morey and Rouder (2011). **Figure 5:** Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0 : \mu = 0$ vs $\mathcal{H}_1 : \mu \sim N(0, \sigma_1^2 = 1)$. ## 3. Properties of the Bayes factor Bayes factors and the replication crisis - It is increasingly difficult to ignore the current crisis of confidence in research. - Several key papers and reports made the ongoing state of affairs unbearable. 1,2,3,4,5,6 - Some attempts to mitigate the problem have been put forward, including pre-registration and recalibration.^{7,8} - Some have suggested that a shift towards Bayesian testing is welcome. 9,10,11 Would Bayes factors contribute to improving things? ¹ Ioannidis (2005). ²Simmons, Nelson, and Simonsohn (2011). ³Bem (2011). ⁴Wicherts, Bakker, and Molenaar (2011). ⁵John, Loewenstein, and Prelec (2012). ⁶ OSC (2015). ⁷Benjamin et al. (2018). ⁸Lakens et al. (2018). Vanpaemel (2010). Konijn et al. (2015). Dienes (2016). What Bayes factors promise to offer might not be what researchers and journals are willing to use. 1 - It has not yet been shown that the Bayes factors' ability to draw support for H₀ will alleviate the bias against publishing null results ("lack of effects" are still too unpopular).Bayes factors need not be aligned with current publication guidelines. - 'B-hacking'² is still entirely possible. New QRPs lurking around the corner? ¹Savalei and Dunn (2015). # 3. Properties of the Bayes factor **Discussion** Discussion 30/4 ### I think that: - The use, abuse, and misuse of NHST and p-values is problematic. The statistical community is aware of this.¹ - Bayes factors are an interesting alternative, but they do have limitations of their own. - In particular, Bayes factors are also based on 'dichotomous modeling thinking': Given two models, which one is to be preferred? I favor a more holistic approach to model comparison. - Bayes factors provide no direct information concerning effect sizes, their magnitude, and uncertainty.^{2,3} - This is sorely missed by this approach. ¹Wasserstein and Lazar (2016). Discussion 31/4 ### What to do? - Truly consider whether testing is what is needed. - In particular, point hypotheses seem prone to trouble. How realistic are these hypotheses? - Do estimation!^{1,2,3} Perform inference based on the entire posterior distribution. Report credible values. Compute posterior probabilities. 4. X-ray of applications of Bayes factors in the literature Until recently, there was no characterization of the use of the Bayes factor in applied research. Wong and colleagues¹ were the first to start unveiling the current state of affairs. In an ongoing effort, I am currently extending the work of Wong et al.. Here I report the details and main findings of my study. Work with Henk Kiers, Rink Hoekstra, Tsz Keung Wong, and Richard Morey. Preprint (under review): https://psyarxiv.com/du3fc/ ¹Wong, Kiers, and Tendeiro (2022). Context 33 / 4 ### **Background:** Social Sciences. ### Target: NHBT and the Bayes factor in particular. ### **Motivation:** Bayes factors have been regularly used since, say, 2010. It is very recent. Not many researchers have received formal training. It is unclear how things are working out. ``` Google Scholar (2010—): ("bayes factor" AND "bayesian test" AND psychol) ``` ### Web of Science: ``` (TI=((bayes factor OR bayes* selection OR bayes* test*) AND psycho*) OR AB=((bayes factor OR bayes* selection OR bayes* test* OR bf*) AND psychol*) OR AK=((bayes factor OR bayes* selection OR bayes* test* OR bf*) AND psychol*)) AND PY=(2010-2022) ``` 109 + 58 = 167 papers (after selection). | | Criterion | Brief description | | |-------|--------------------------------------------------|---------------------------------------------------------------------------------|--| | QRIP | 1 – Describing the BF as posterior odds | Defining or elaborating on BFs as posterior odds ratios. | | | | 3a – Missing explanation for the chosen priors | The reason or justification for the chosen priors is not provided. | | | | 3b – No mention to the priors used | It is unclear which priors were used under either model. | | | | 3c – Incomplete info regarding the priors used | E.g., only providing the distribution family ("Cauchy"). | | | | 4 – Not referring to the comparison of models | Presenting BFs as absolute evidence for one of the two models. | | | | 5 – Making absolute statements | Based on the BF, concluding that there is (not) an effect. | | | | 6 – Using BF as posterior odds | Interpreting BFs as ratios of posterior model probabilities. | | | | 7 – Considering BF as effect size | Associating the size of the BF to the size of the effect. | | | | 9 – Inconclusive evidence as evidence of absence | Stating that there is no effect when faced with inconclusive evidence. | | | | 10 – Interpreting ranges of BF values only | Interpreting the Bayes factor simply using cutoffs (e.g., 1-3, 3-10). | | | Usage | A – Default prior | Justifying using a prior because it is 'the' default. | | | | B – Null results | Bayes factors as a follow-up to non-significant outcomes from NHST. | | | | C – Presence <i>versus</i> absence | Bayes factors to distinguish between the presence and the absence of an effect. | | | | Criterion | Count | Percentage | |-------|--------------------------------------------------|-------|------------| | | 1 – Describing the BF as posterior odds | 22 | 13.2% | | | 3a – Missing explanation for the chosen priors | 18 | 10.8% | | | 3b – No mention to the priors used | 50 | 29.9% | | | 3c – Incomplete info regarding the priors used | 10 | 6.0% | | QRIP | 4 – Not referring to the comparison of models | 104 | 62.3% | | õ | 5 – Making absolute statements | 59 | 35.3% | | | 6 – Using BF as posterior odds | 34 | 20.4% | | | 7 – Considering BF as effect size | 7 | 4.2% | | | 9 – Inconclusive evidence as evidence of absence | 6 | 3.6% | | | 10 – Interpreting ranges of BF values only | 9 | 5.4% | | a | A – Default prior | 59 | 35.3% | | Usage | B – Null results | 27 | 16.2% | | | C – Presence <i>versus</i> absence | 30 | 18.0% | Results 37 / 4 ### Overall: - 149 papers (89.2%) displayed at least one QRIP. - 104 papers (62.3%) displayed at least two QRIPs. We reasoned over the reasons behind the found problems. Below is a selected synopsis of our considerations. 4. X-ray of applications of Bayes factors in the literature Bayes factors \longleftrightarrow posterior odds "The alternative hypothesis is 2 times more likely than the null hypothesis ($B_{+0}=2.46$; Bayesian 95 % CI [0.106, 0.896])." ### Possible explanations: - Principle of indifference. - Overselling Bayes as the theory of inverse probability.¹ - Cognitive dissonance. ¹Jeffreys (1961). 4. X-ray of applications of Bayes factors in the literature Dealing with priors Reporting nothing at all (30%) or relying on software defaults (35%) was quite common. ### **Possible explanations:** - Lack of awareness. - Economic writing style. - Default priors to... ...ease comparison, avoid specification, 'objectivity'. 4. X-ray of applications of Bayes factors in the literature Bayes factors as *relative* evidence "With this 'stronger' VB05 prior, we found strong evidence for the null hypothesis (BFs_{null} ranging from 12.7 to 22.7 for the 5 ROIs)." ### **Possible explanations:** - Writing style. - Implicitly assumed. - Increased impact. 4. X-ray of applications of Bayes factors in the literature Bayes factors to establish absence/presence "For 6-year-olds, there was no difference between environments ($M_{smooth} = 2.11 \text{ vs. } M_{rough} = 1.93, t(52) = 1.0, p = 0.31, d = 0.3, BF = .42$)." ### **Possible explanations:** - Increased impact. - Avoid uncertainty. - Writing style. - Influence from NHST. - Decision making. What's next? A follow-up study is in preparation. - Create and deploy a Shiny app that illustrates correct and incorrect usage of the Bayes factor. - Assess the efficacy of this app by means of an experiment. # Conclusion Conclusion 44/4 I have spent some time learning about Bayes factors. What do I now think of them? ### I think that: - Model comparison (including hypothesis testing) is really important. - However, and clearly, researchers test way too much. - Model comparison says very little (nothing?) about how well a model fits to data. - Testing need not be a prerequisite for estimation, unlike what some advocate.¹ - Estimation quantifies uncertainty in ways that Bayes factors simply can not. - Estimate ESs (direction, magnitude). Bayes factors ignore this! - Avoid the dichotomous reasoning subjacent to Bayes factors. - Bayes factors can be very useful (I use them!), but they should not always be the end of our inference. ¹Wagenmakers et al. (2018). 3. Properties of the Bayes factor (EXTRA) 3. Properties of the Bayes factor (EXTRA) Bayes factors can be hard to compute ### **Bayes factors are hard to compute** $$BF_{01} = \frac{P(D|\mathcal{H}_0)}{P(D|\mathcal{H}_1)}.$$ Bayes factors are ratios of marginal likelihoods: $$P(D|\mathcal{H}_i) = \int_{\Theta_i} p(D|\theta, \mathcal{H}_i) p(\theta|\mathcal{H}_i) d\theta$$ - The marginal likelihoods, $P(D|\mathcal{H}_i)$, are hard to compute in general. - Resort to (not straightforward) numerical procedures^{1,2} - Alternatively, use software with prepackaged default priors and data models^{3,4} (limited to specific models). But: See bridge sampling by Quentin Gronau. ⁴Morey and Rouder (2022). ¹Chen, Shao, and Ibrahim (2000). ²Gamerman and Lopes (2006). ³JASP Team (2022). # 3. Properties of the Bayes factor (EXTRA) Use of 'default' Bayes factors ### 'Default' Bayes factors lack justification - Priors matter a lot for Bayes factors. - 'Objective' bayesians advocate using predefined priors for testing. 1,2,3 - Albeit convenient, default priors lack empirical justification.⁴ - 'Objective priors' were derived under strong requirements^{5,6}, which impose strong restrictions on the priors ("appearance of objectivity"). - Defaults are only useful to the extent that they adequately translate one's beliefs.^{8,9} - Some default priors, like the now famous JZS prior^{10,11,12}, still require a specification of a scale parameter. Its default value has also changed over time.^{13,14} ¹ leffreys (1961). ²Berger and Pericchi (2001). ³Rouder et al. (2009). ⁴Robert (2016). ⁵Bavarri et al. (2012). ⁶Berger and Pericchi (2001). ⁷Berger and Pericchi (ibid.). ⁸ Kruschke (2011). ⁹Kruschke and Liddell (2018b). ¹⁰ Jeffreys (1961). ¹¹ Zellner and Siow (1980). ¹² Rouder et al. (2009). ¹⁴ Morey and Rouder (2022). Bayes factors do not imply a model is probably correct 3. Properties of the Bayes factor (EXTRA) ### Bayes factors do not imply a model is correct - A large Bayes factor, say, $BF_{10} = 100$, may mislead one to belief that \mathcal{H}_1 is true or at least more useful. - Bayes factors are only a measure of relative plausibility among two competing models. - \blacksquare \mathcal{H}_1 might actually be a dreadful model (e.g., lead to horribly wrong predictions), but simply less dreadful than its alternative \mathcal{H}_0 .¹ - Bayes factors provide no absolute evidence supporting either model under comparison.² - Little is known as to how Bayes factors behave under model misspecification (but see³). ### In general, it seems best to: - Avoid thinking about truth / falsehood. - Instead, think about evidence in favor / against of a model. - Bayes factors can indeed assist with this. # 3. Properties of the Bayes factor (EXTRA) Qualitative interpretation of Bayes factors ### Interpretation of Bayes factors can be ambiguous - Bayes factors are a continuous measure of evidence in $[0, \infty)$: - $BF_{01} > 1$: Data are more likely under \mathcal{H}_0 than under \mathcal{H}_1 . The larger BF_{01} , the stronger the evidence for \mathcal{H}_0 over \mathcal{H}_1 . - $BF_{01} < 1$: Data are more likely under \mathcal{H}_1 than under \mathcal{H}_0 . The smaller BF_{01} , the stronger the evidence for \mathcal{H}_1 over \mathcal{H}_0 . - But, how 'much more' likely? - Answer is not unique: Qualitative interpretations of strength are subjective (what is weak?, moderate?, strong?),1,2,3,4 This is not a problem of Bayes factor per se, but of practitioners requiring qualitative labels for test results. ² Kass and Raftery (1995). ¹ leffrevs (1961). ³ Lee and Wagenmakers (2013). ## 3. Properties of the Bayes factor (EXTRA) Bayes factors test model classes #### Bayes factors test model *classes* Consider testing $\mathcal{H}_0: \theta = \theta_0$ vs $\mathcal{H}_1: \theta \neq \theta_0$. Then $$B_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}, \quad \text{with} \quad p(D|\mathcal{H}_1) = \int p(D|\theta, \mathcal{H}_1) p(\theta|\mathcal{H}_1) d\theta.$$ - $p(D|\mathcal{H}_1)$ is a weighted likelihood for a model class: Each parameter value θ defines one particular model in the class. - Bayes factors as ratios of likelihoods of model classes.¹ - E.g., $BF_{01} = 1/5$: The data are five times more likely under the model class under \mathcal{H}_1 , averaged over its prior distribution, than under \mathcal{H}_0 . - Catch: The most likely model class need not include the true model that generated the data. I.e., the Bayes factor may fail to indicate the class that includes the data-generating model (in case it exists, of course).² 1Liu and Aitkin (2008) # 3. Properties of the Bayes factor (EXTRA) Bayes factors favor point \mathcal{H}_0 #### Bayes factors don't favor one-sided \mathcal{H}_0 - Surprisingly, the point null-based result does not hold for one-sided \mathcal{H}_0 (e.g., comparing $\mu > 0$ and $\mu < 0$).^{1,2} - In this case, $p(\mathcal{H}_0|D)$ and p-values can be very close under a wide range of priors. **Figure 6:** Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_2: \mu \sim N^+(0, \sigma_1^2 = 1)$ vs $\mathcal{H}_3: \mu \sim N^-(0, \sigma_1^2 = 1)$. ^{1&}lt;sub>Pratt</sub> (1965). ²Casella and Berger (1987). #### Bayes factors don't favor one-sided \mathcal{H}_0 Tuning just-significant ESs with Bayes factors: **Figure 7:** ESs required by BF_{32} , based of Jeffreys (1961) taxonomy. ### Bayes factors don't favor one-sided \mathcal{H}_0 - $p(\mathcal{H}_0|D)$ can be equal or even smaller than the p-value. - \blacksquare 'p-values overstate evidence against $\mathcal{H}_0' \longrightarrow \text{Not always.}^2$ Who to blame for this state of affairs? We suggest the nature of the point null hypothesis: we are not alone.^{3,4} But others have argued in favor point of null hypotheses. 5,6,7,8,9,10 'True' point hypotheses, really?!^{11,12,13} 6 Kass and Raftery (1995). 11 Berger and Delampady (1987). 12 Cohen (1994) ¹Casella and Berger (1987). ² Jeffreys (1961). ³Casella and Berger (1987). ⁴ Vardeman (1987). ⁵ Berger and Delampady (1987). ⁷ Gallistel (2009) ⁸ Koniin et al. (2015). ¹⁰ Morev and Rouder (2011). ¹³ Morey and Rouder (2011). ⁹Marden (2000). ## 3. Properties of the Bayes factor (EXTRA) Bayes factors favor \mathcal{H}_a #### Bayes factors favor \mathcal{H}_a , II - Consider $\mathcal{H}_0: \theta = \theta_0$ vs $\mathcal{H}_0: \theta \neq \theta_0$. - As $n \to \infty$, Bayes factors accumulate evidence in favor of true \mathcal{H}_1 much faster than they accumulate evidence in favor of true \mathcal{H}_0 . - I.e., although Bayes factors allow drawing support for either model, they do so asymmetrically.¹ ¹ Johnson and Rossell (2010). **Figure 8:** Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0: \mu = 0$ vs $\mathcal{H}_1: \mu \sim N(0, \sigma_1^2 = 1)$. # Bayes factors often agree with p-values 3. Properties of the Bayes factor (EXTRA) #### Bayes factors often agree with p-values p-values are often accused of being 'violently biased against the null hypothesis'. ^{1,2} But this is not always true. ³ #### Trafimow's argument: Consider $p(D|\mathcal{H}_1)$, i.e., the likelihood of the observed data under the *alternative* model. $$p(\mathcal{H}_0|D) = \frac{p(\mathcal{H}_0)p(D|\mathcal{H}_0)}{p(\mathcal{H}_0)p(D|\mathcal{H}_0) + [1 - p(\mathcal{H}_0)]p(D|\mathcal{H}_1)}$$ Suppose p is small (say, < .05). - If $p(D|\mathcal{H}_1)$ is very small then $p(\mathcal{H}_0|D)$ is close to 1 for $p(D|\mathcal{H}_0)$ fixed. Disagreement with p. - But, if $p(D|\mathcal{H}_1)$ is large then $p(\mathcal{H}_0|D)$ is small. Agreement with p. #### Bayes factors often agree with p-values #### Conclusion: When data are more likely under \mathcal{H}_1 than under \mathcal{H}_0 , Bayes factors and p-values tend to agree with each other. The p-value, by definition, is oblivious to the likelihood of the data under \mathcal{H}_1 . This is why the p-value is sometimes biased against \mathcal{H}_0 . NHBT allows drawing support for \mathcal{H}_0 , unlike NHST. So, large p-values cannot be used as evidence in favor of \mathcal{H}_0 , but large BF_{01} values can.