The Bayes factor

Statistical properties and a diagnosis of its use in applied research

Jorge N.Tendeiro tendeiro@hiroshima-u.ac.jp www.jorgetendeiro.com

Slides at www.jorgetendeiro.com/talks/2023_HU_slides.pdf

06 January, 2023

Hiroshima University

Today's talk

- 1. NHST and its shortcomings (quickly).
- 2. Introduction to the Bayes factor.
- 3. Properties of the Bayes factor.
- 4. X-ray of applications of Bayes factors in the literature.

About me 2 / 44

Jorge N. Tendeiro

Hiroshima University

Officially:

Office of Research and Academia-Government-Community Collaboration

For research:

Education and Research Center for Artificial Intelligence and Data Innovation

Research interests:

- Three-mode component analysis (PhD).
- Item response theory, namely person-fit analysis.
- Bayesian inference, namely the Bayes factor.
- Various types of statistical modeling through collaborations.

1. NHST and its shortcomings (quickly)

By $null\ hypothesis\ significance\ testing\ (NHST),\ I\ am\ referring\ to\ the\ blend^{1,2}\ between$

Fisher's significance testing

and

Neyman and Pearson's hypothesis testing.

¹Lehmann (1993).

Misconceptions concerning NHST and its infamous p-value (and also the confidence interval) are well documented in the literature. 1,2,3,4,5,6,7

Various science fields are experiencing a crisis of confidence, as many researchers believe published results are not as well supported as claimed.

Q: Whv?

A: Among several other reasons (QRPs^{8,9}), due to overreliance on, and misuse of NHST and *p*-values. 10,11,12,13

¹Belia et al. (2005).

² Falk and Greenhaum (1995).

³Goodman (2008)

⁴ Greenland et al. (2016). 5 Haller and Kraus (2002)

⁶Hoekstra et al. (2014).

^{7&}lt;sub>Oakes</sub> (1986).

⁸ John, Loewenstein, and Prelec (2012).

⁹Simmons, Nelson, and Simonsohn (2011).

¹⁰ Edwards, Lindman, and Savage (1963).

¹¹ Cohen (1994)

¹² Nickerson (2000) 13 Wagenmakers (2007).

Here is a short, not exaustive, list:1,2

- $ightharpoonup p = probability of <math>\mathcal{H}_0$ being true.
- $p < \alpha \Longrightarrow \mathcal{H}_0$ is false.
- $p > \alpha \Longrightarrow \mathcal{H}_0$ is true.
- $\blacksquare p > \alpha \Longrightarrow \mathcal{H}_0$ is likely true.
- Relation between p and effect sizes.
- $ightharpoonup p = probability of observed data under <math>\mathcal{H}_0$.
- lacksquare $p<lpha\Longrightarrow$ the probability of a type I error is lpha.
- lacksquare Statistically significant \simeq practically significant.
- $ightharpoonup p > \alpha \Longrightarrow ext{effect size is small.}$
- ...

Is the p-value an uninteresting probability?

$$p = P \bigg[\underbrace{\text{observed data (or more extreme})}_{\text{data}} | \underbrace{\mathcal{H}_0}_{\text{theory}} \bigg].$$

Arguably, researchers care more about the reversed conditional probability:

$$P(\mathsf{theory}|\mathsf{data}).$$

This leads us to the Bayes factor (well, only kind of).

2. Introduction to the Bayes factor

Bayes factors are being increasingly advocated as a better alternative to NHST. 1,2,3,4,5

¹Jeffreys (1961).

²Wagenmakers et al. (2010).

The Bayes factor^{1,2} quantifies the change from prior odds to posterior odds due to the data observed. Consider:

- Two hypotheses (or models) to compare, for instance $\mathcal{H}_0: \theta = 0$ vs $\mathcal{H}_1: \theta \neq 0$.
- \blacksquare Data D.

Assume that either \mathcal{H}_0 or \mathcal{H}_1 must hold true.

Then by Bayes' rule (i = 0, 1):

$$p(\mathcal{H}_i|D) = \frac{p(\mathcal{H}_i)p(D|\mathcal{H}_i)}{p(\mathcal{H}_0)p(D|\mathcal{H}_0) + p(\mathcal{H}_1)p(D|\mathcal{H}_1)},$$

and dividing member by member leads to

$$\underbrace{\frac{p(\mathcal{H}_0|D)}{p(\mathcal{H}_1|D)}}_{\text{posterior odds}} = \underbrace{\frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}}_{\text{prior odds}} \times \underbrace{\frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}}_{\text{Bayes factor, }BF_{01}}$$

¹Jeffreys (1939). ²Kass and Raftery (1995).

$$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}$$

For instance, $BF_{01} = 5$:

The data are five times more likely to have occurred under \mathcal{H}_0 than under \mathcal{H}_1 .

$$\underbrace{\frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}}_{\text{prior odds}} \times \underbrace{\frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}}_{\text{Bayes factor, }BF_{01}} = \underbrace{\frac{p(\mathcal{H}_0|D)}{p(\mathcal{H}_1|D)}}_{\text{posterior odds}}$$

For instance, $BF_{01} = 5$:

After observing the data, my relative belief in \mathcal{H}_0 over \mathcal{H}_1 increased 5 times.

This holds regardless of the initial relative belief of a rational agent:

Prior belief in		Prior odds	\mathbf{BF}_{01}	Posterior odds	Posterior belief on	
\mathcal{H}_0	\mathcal{H}_1				\mathcal{H}_0	\mathcal{H}_1
1/2 = .50	1/2 = .50	1	5	5	5/6 = .83	1/6 = .17
2/3 = .67	1/3 = .33	2	5	10	10/11 = .91	1/11 = .09
1/10 = .01	9/10 = .90	1/9	5	5/9	5/14 = .36	9/14 = .64

$$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)} \in [0, \infty)$$
:

- $BF_{01} > 1$ Evidence in favor of \mathcal{H}_0 over \mathcal{H}_1 .
- $BF_{01} = 1 \longrightarrow \text{Equal support for either model.}$
- $BF_{01} < 1 \longrightarrow \text{Evidence in favor of } \mathcal{H}_1 \text{ over } \mathcal{H}_0.$

Some qualitative cutoff labels have been suggested, for instance^{1,2,3}.

Here's Kass and Raftery's classifier:

\mathbf{BF}_{01}	F_{01} Strength of evidence in favor of \mathcal{H}_0			
1 – 3	Not worth more than a bare mention			
3 - 20	Positive			
20 - 150	Strong			
> 150	Very strong			
For $BF_{01} <$ 1, use $BF_{10} = \frac{1}{BF_{01}}$ as strength of evidence in favor of \mathcal{H}_1 .				

¹ leffreys (1939). ² Kass and Raftery (1995).

$$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}$$

For simpler models there are a few R packages available to assist with the computations:

- BayesFactor¹ (mostly used).
- bain.²
- easystats.3
- bayestestR.4
- brms⁵ and rstanarm,⁶ relying on the bridgesampling⁷ package.

There is also JASP, a handy and open source GUI.

¹Morey and Rouder (2022).

²Gu et al. (2021).

³ Liidecke et al. (2022)

⁴Makowski, Ben-Shachar, and Lüdecke (2019).

⁵ Bürkner (2021).

⁶ Goodrich et al. (2022)

⁷Gronau, Singmann, and Wagenmakers (2020).

$$BF_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}$$

Essentially, any two statistical models that make predictions are in theory eligible to be compared via the Bayes factor.

We "just" need to evaluate each model's marginal likelihood:

$$P(D|\mathcal{H}_i) = \int_{\Theta_i} \underbrace{p(D|\theta, \mathcal{H}_i)}_{\text{likelihood}} \underbrace{p(\theta|\mathcal{H}_i)}_{\text{prior}} d\theta.$$

There are various numerical procedures for this (e.g., 1,2,3,4,5,6,7,8), but recently bridge sampling has been of great practical use (in combination JAGS, Stan, or NIMBLE).

¹Berger and Pericchi (2001).

²Carlin and Chib (1995).

³Chen, Shao, and Ibrahim (2000).

⁴Gamerman and Lopes (2006).

⁵Gelman and Meng (1998).

⁶ Green (1995)

⁷Gronau et al. (2017).

⁸ Kass and Raftery (1995).

3. Properties of the Bayes factor

Bayes factor have been praised in many instances. 1,2,3,4,5

But, surprisingly, I could not find many sources with critical appraisals of the Bayes factor.

I did exactly this a couple of years ago.⁶

6 Tendeiro and Kiers (2019)

¹Dienes (2011).

² Dienes (2014).

³Masson (2011).

⁴Vanpaemel (2010).

⁵Wagenmakers et al. (2018).

- 1. Bayes factors can be hard to compute. —
- 2. Bayes factors are sensitive to within-model priors. -
- 3. Use of 'default' Bayes factors. →
- 4. Bayes factors are not posterior model probabilities. —
- 5. Bayes factors do not imply a model is probably correct. ->
- 6. Qualitative interpretation of Bayes factors. →
- 7. Bayes factors test model classes. ->
- 8. Bayes factors ←→ parameter estimation. →
- 9. Bayes factors favor point \mathcal{H}_0 . \longrightarrow
- 10. Bayes factors favor \mathcal{H}_a . \longrightarrow
- 11. Bayes factors often agree with p-values. \rightarrow

I will focus on *some* of the issues, for time purposes. The remaining are left as extra slides at the end (but we can discuss them too!!).

3. Properties of the Bayes factor

Bayes factors are sensitive to within-model priors

Very well known. 1,2,3,4,5

Due to fact that the likelihood function is averaged over the prior to compute the marginal likelihood under a model:

$$P(D|\mathcal{H}_i) = \int_{\Theta_i} p(D|\theta, \mathcal{H}_i) p(\theta|\mathcal{H}_i) d\theta.$$

Example: Bias of a coin⁶

- \blacksquare $\mathcal{H}_0: \theta = .5$ vs $\mathcal{H}_1: \theta \neq .5$
- Data: 60 successes in 100 throws.
- Four within-model priors; all Beta(a, b).

Prior	\mathbf{BF}_{10}	Lee & Wagenmakers (2014)
Approx. to Haldane's prior ($a=.05, b=.05$)	0.09	'Strong' evidence for \mathcal{H}_0
Jeffreys' prior ($a = .5, b = .5$)	0.60	'Anecdotal' evidence for \mathcal{H}_0
Uniform prior ($a = 1, b = 1$)	0.91	'Anecdotal' evidence for \mathcal{H}_0
An informative prior ($a=3,b=2$)	1.55	'Anecdotal' evidence for \mathcal{H}_1

 ¹ Kass (1993).
 3 Vanpaemel (2010).
 5 Withers (2002).

 2 Gallistel (2009).
 4 Robert (2016).
 6 Liu and Aitkin (2008).

- Arbitrarily vague priors are not allowed because the null model would be invariably supported.
 - So, in the Bayes Factor context, vague priors will predetermine the test result!¹
- However, counterintuitively, improper priors might work.²
- The problem cannot be solved by increasing sample size. 3,4,5

This behavior of Bayes factors is in sharp contrast with estimation of posterior distributions.^{6,7}

¹Morey and Rouder (2011).

²Berger and Pericchi (2001).

³Bayarri et al. (2012).

⁴Berger and Pericchi (2001).

⁵ Kass and Raftery (1995).

⁶Gelman, Meng, and Stern (1996).

⁷Kass (1993).

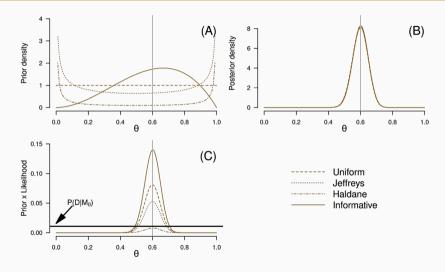


Figure 1: Data: 60 successes in 100 throws.

How to best choose priors then?

- Some defend informative priors should be part of model setup and evaluation.¹
- Other suggest using default/reference/objective, well chosen, priors.^{2,3,4,5}
- Perform sensitivity analysis.

¹Vanpaemel (2010). ²Bavarri et al. (2012).

3. Properties of the Bayes factor

Bayes factors are not posterior model probabilities

.

Say that $BF_{01}=32$; what does this mean? After looking at the data, we revise our belief towards \mathcal{H}_0 by 32 times.

Q: What does this imply concerning the probability of each model, given the observed data? **A:** On its own, nothing at all!

Bayes factors are the multiplicative factor converting prior odds to posterior odds. They say nothing directly about model probabilities.

$$\underbrace{\frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}}_{\text{prior odds}} \times \underbrace{\frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}}_{\text{Bayes factor}} = \underbrace{\frac{p(\mathcal{H}_0|D)}{p(\mathcal{H}_1|D)}}_{\text{posterior odds}}$$

- Bayes factors say nothing about the plausability of each model in light of the data, that is, of $p(\mathcal{H}_i|D)$.
- Thus, Bayes factors = rate of change of belief, not belief itself.¹
- To compute $p(\mathcal{H}_i|D)$, prior model probabilities are needed:

$$p(\mathcal{H}_0|D) = \frac{\mathsf{Prior} \ \mathsf{odds} \times BF_{01}}{\mathsf{1} + \mathsf{Prior} \ \mathsf{odds} \times BF_{01}}, \quad p(\mathcal{H}_1|D) = \mathsf{1} - p(\mathcal{H}_0|D).$$

Example

- Anna: Equal prior belief for either model.
- Ben: Strong prior belief for \mathcal{H}_1 .
- $BF_{01} = 32$: Applies to Anna and Ben equally.

	$p(\mathcal{H}_0)$	$p(\mathcal{H}_1)$	BF_{01}	$p(\mathcal{H}_0 D)$	$p(\mathcal{H}_1 D)$	Conclusion
Anna	.50	.50	32	.970	.030	Favors \mathcal{H}_0
Ben	.01	.99		.244	.756	Favors \mathcal{H}_1

¹Edwards, Lindman, and Savage (1963).

3. Properties of the Bayes factor

 $\textbf{Bayes factors} \longleftrightarrow \textbf{parameter estimation}$

- Frequentist two-sided significance tests and confidence intervals (CIs) are directly related: The null hypothesis is rejected iff the null point is outside the CI.
- This is not valid in the Bayesian framework.¹

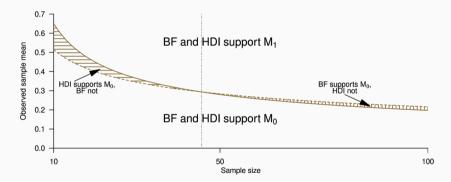


Figure 2: Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0 : \mu = 0$ vs $\mathcal{H}_1 : \mu \sim N(0, \sigma_1^2 = 1)$.

¹Kruschke and Liddell (2018a).

- There are many 'credible intervals', thus perhaps not surprising.
- Estimation and testing seem apart in the Bayesian world.
 Some argue they address different research questions^{1,2,3,4}, but not everyone agrees.^{5,6}

In particular, myself and Henk Kiers have recently argued that a unified Bayesian framework for testing and estimation is possible (https://psyarxiv.com/zbpmy/).⁷

¹ Kruschke (2011).

²Ly, Verhagen, and Wagenmakers (2016).

³Wagenmakers et al. (2018).

⁴Kruschke and Liddell (2018a).

⁵Robert (2016). ⁶Bernardo (2012).

⁷Tendeiro and Kiers (2022).

3. Properties of the Bayes factor

Bayes factors favor point \mathcal{H}_0

- NHST is strongly biased against the point null model \mathcal{H}_0 .^{1,2,3,4}
- In other words, $p(\mathcal{H}_0|D)$ and p-values do not agree. (Yes, they are conceptually different!⁵)
- The discrepancy worsens as the sample size increases.

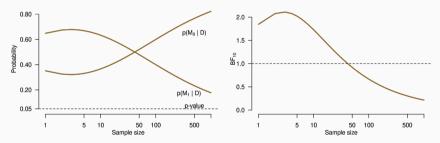


Figure 3: Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0: \mu = 0$ vs $\mathcal{H}_1: \mu \sim N(0, \sigma_1^2 = 1)$.

⁴Sellke, Bayarri, and Berger (2001).

¹Edwards, Lindman, and Savage (1963).

² Dickey (1977).

³Berger and Sellke (1987).

⁵ Gigerenzer (2018).

- In this example, for n > 42 one rejects \mathcal{H}_0 under NHST whereas $BF_{10} < 1$ (indicating support for \mathcal{H}_0).
- In sum: Bigger ESs are needed for the Bayes factor to sway towards \mathcal{H}_1 . But, how much bigger?

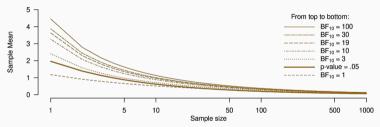


Figure 4: ESs required by BF_{10} , based of Jeffreys (1961) taxonomy.

Calibrate Bayes factors $\longleftrightarrow p$ -values?^{1,2}

¹Wetzels et al. (2011).

²Jeon and De Boeck (2017).

3. Properties of the Bayes factor

Bayes factors favor \mathcal{H}_a

- Unless \mathcal{H}_0 is exactly true, $n \to \infty \Longrightarrow BF_{01} \to 0$.
- \blacksquare Thus, both BF_{01} and the p-value approach 0 as n increases.
- It has be argued that this is a good property of Bayes factors (they are information consistent).¹
- \blacksquare However, BF_{01} does ignore 'practical significance', or magnitude of ESs.²

Meehl's paradox:

For true negligible non-zero ESs, data accumulation should make it easier to reject a theory, not confirm it.^{3,4}

¹Ly, Verhagen, and Wagenmakers (2016).

³Meehl (1967).

²Morey and Rouder (2011).

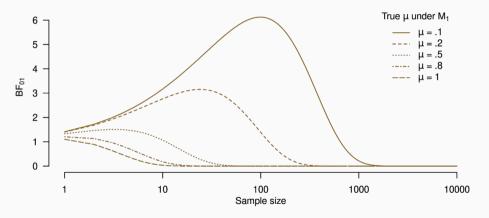


Figure 5: Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0 : \mu = 0$ vs $\mathcal{H}_1 : \mu \sim N(0, \sigma_1^2 = 1)$.

3. Properties of the Bayes factor

Bayes factors and the replication crisis

- It is increasingly difficult to ignore the current crisis of confidence in research.
- Several key papers and reports made the ongoing state of affairs unbearable. 1,2,3,4,5,6
- Some attempts to mitigate the problem have been put forward, including pre-registration and recalibration.^{7,8}
- Some have suggested that a shift towards Bayesian testing is welcome. 9,10,11

Would Bayes factors contribute to improving things?

¹ Ioannidis (2005).

²Simmons, Nelson, and Simonsohn (2011).

³Bem (2011).

⁴Wicherts, Bakker, and Molenaar (2011).

⁵John, Loewenstein, and Prelec (2012).

⁶ OSC (2015).

⁷Benjamin et al. (2018). ⁸Lakens et al. (2018).

Vanpaemel (2010).
 Konijn et al. (2015).
 Dienes (2016).

What Bayes factors promise to offer might not be what researchers and journals are willing to use. 1

- It has not yet been shown that the Bayes factors' ability to draw support for H₀ will alleviate the bias against publishing null results ("lack of effects" are still too unpopular).Bayes factors need not be aligned with current publication guidelines.
- 'B-hacking'² is still entirely possible. New QRPs lurking around the corner?

¹Savalei and Dunn (2015).

3. Properties of the Bayes factor

Discussion

Discussion 30/4

I think that:

- The use, abuse, and misuse of NHST and p-values is problematic. The statistical community is aware of this.¹
- Bayes factors are an interesting alternative, but they do have limitations of their own.
- In particular, Bayes factors are also based on 'dichotomous modeling thinking': Given two models, which one is to be preferred?
 I favor a more holistic approach to model comparison.
- Bayes factors provide no direct information concerning effect sizes, their magnitude, and uncertainty.^{2,3}
 - This is sorely missed by this approach.

¹Wasserstein and Lazar (2016).

Discussion 31/4

What to do?

- Truly consider whether testing is what is needed.
- In particular, point hypotheses seem prone to trouble. How realistic are these hypotheses?
- Do estimation!^{1,2,3}

Perform inference based on the entire posterior distribution.

Report credible values.

Compute posterior probabilities.

4. X-ray of applications of Bayes factors in the literature

Until recently, there was no characterization of the use of the Bayes factor in applied research.

Wong and colleagues¹ were the first to start unveiling the current state of affairs.

In an ongoing effort, I am currently extending the work of Wong et al.. Here I report the details and main findings of my study.

Work with Henk Kiers, Rink Hoekstra, Tsz Keung Wong, and Richard Morey.

Preprint (under review):
https://psyarxiv.com/du3fc/

¹Wong, Kiers, and Tendeiro (2022).

Context 33 / 4

Background:

Social Sciences.

Target:

NHBT and the Bayes factor in particular.

Motivation:

Bayes factors have been regularly used since, say, 2010.

It is very recent.

Not many researchers have received formal training.

It is unclear how things are working out.

```
Google Scholar (2010—):
    ("bayes factor" AND "bayesian test" AND psychol)
```

Web of Science:

```
(TI=((bayes factor OR bayes* selection OR bayes* test*) AND psycho*) OR

AB=((bayes factor OR bayes* selection OR bayes* test* OR bf*) AND psychol*) OR

AK=((bayes factor OR bayes* selection OR bayes* test* OR bf*) AND psychol*))

AND PY=(2010-2022)
```

109 + 58 = 167 papers (after selection).

	Criterion	Brief description	
QRIP	1 – Describing the BF as posterior odds	Defining or elaborating on BFs as posterior odds ratios.	
	3a – Missing explanation for the chosen priors	The reason or justification for the chosen priors is not provided.	
	3b – No mention to the priors used	It is unclear which priors were used under either model.	
	3c – Incomplete info regarding the priors used	E.g., only providing the distribution family ("Cauchy").	
	4 – Not referring to the comparison of models	Presenting BFs as absolute evidence for one of the two models.	
	5 – Making absolute statements	Based on the BF, concluding that there is (not) an effect.	
	6 – Using BF as posterior odds	Interpreting BFs as ratios of posterior model probabilities.	
	7 – Considering BF as effect size	Associating the size of the BF to the size of the effect.	
	9 – Inconclusive evidence as evidence of absence	Stating that there is no effect when faced with inconclusive evidence.	
	10 – Interpreting ranges of BF values only	Interpreting the Bayes factor simply using cutoffs (e.g., 1-3, 3-10).	
Usage	A – Default prior	Justifying using a prior because it is 'the' default.	
	B – Null results	Bayes factors as a follow-up to non-significant outcomes from NHST.	
	C – Presence <i>versus</i> absence	Bayes factors to distinguish between the presence and the absence of an effect.	

	Criterion	Count	Percentage
	1 – Describing the BF as posterior odds	22	13.2%
	3a – Missing explanation for the chosen priors	18	10.8%
	3b – No mention to the priors used	50	29.9%
	3c – Incomplete info regarding the priors used	10	6.0%
QRIP	4 – Not referring to the comparison of models	104	62.3%
õ	5 – Making absolute statements	59	35.3%
	6 – Using BF as posterior odds	34	20.4%
	7 – Considering BF as effect size	7	4.2%
	9 – Inconclusive evidence as evidence of absence	6	3.6%
	10 – Interpreting ranges of BF values only	9	5.4%
a	A – Default prior	59	35.3%
Usage	B – Null results	27	16.2%
	C – Presence <i>versus</i> absence	30	18.0%

Results 37 / 4

Overall:

- 149 papers (89.2%) displayed at least one QRIP.
- 104 papers (62.3%) displayed at least two QRIPs.

We reasoned over the reasons behind the found problems.

Below is a selected synopsis of our considerations.

4. X-ray of applications of Bayes factors in the literature

Bayes factors \longleftrightarrow posterior odds

"The alternative hypothesis is 2 times more likely than the null hypothesis ($B_{+0}=2.46$; Bayesian 95 % CI [0.106, 0.896])."

Possible explanations:

- Principle of indifference.
- Overselling Bayes as the theory of inverse probability.¹
- Cognitive dissonance.

¹Jeffreys (1961).

4. X-ray of applications of Bayes factors in the literature

Dealing with priors

Reporting nothing at all (30%) or relying on software defaults (35%) was quite common.

Possible explanations:

- Lack of awareness.
- Economic writing style.
- Default priors to...

...ease comparison, avoid specification, 'objectivity'.

4. X-ray of applications of Bayes factors in the literature

Bayes factors as *relative* evidence

"With this 'stronger' VB05 prior, we found strong evidence for the null hypothesis (BFs_{null} ranging from 12.7 to 22.7 for the 5 ROIs)."

Possible explanations:

- Writing style.
- Implicitly assumed.
- Increased impact.

4. X-ray of applications of Bayes factors in the literature

Bayes factors to establish absence/presence

"For 6-year-olds, there was no difference between environments ($M_{smooth} = 2.11 \text{ vs. } M_{rough} = 1.93, t(52) = 1.0, p = 0.31, d = 0.3, BF = .42$)."

Possible explanations:

- Increased impact.
- Avoid uncertainty.
- Writing style.
- Influence from NHST.
- Decision making.

What's next?

A follow-up study is in preparation.

- Create and deploy a Shiny app that illustrates correct and incorrect usage of the Bayes factor.
- Assess the efficacy of this app by means of an experiment.

Conclusion

Conclusion 44/4

I have spent some time learning about Bayes factors.

What do I now think of them?

I think that:

- Model comparison (including hypothesis testing) is really important.
- However, and clearly, researchers test way too much.
- Model comparison says very little (nothing?) about how well a model fits to data.
- Testing need not be a prerequisite for estimation, unlike what some advocate.¹
- Estimation quantifies uncertainty in ways that Bayes factors simply can not.
- Estimate ESs (direction, magnitude). Bayes factors ignore this!
- Avoid the dichotomous reasoning subjacent to Bayes factors.
- Bayes factors can be very useful (I use them!), but they should not always be the end of our inference.

¹Wagenmakers et al. (2018).

3. Properties of the Bayes factor (EXTRA)

3. Properties of the Bayes factor (EXTRA)

Bayes factors can be hard to compute

Bayes factors are hard to compute

$$BF_{01} = \frac{P(D|\mathcal{H}_0)}{P(D|\mathcal{H}_1)}.$$

Bayes factors are ratios of marginal likelihoods:

$$P(D|\mathcal{H}_i) = \int_{\Theta_i} p(D|\theta, \mathcal{H}_i) p(\theta|\mathcal{H}_i) d\theta$$

- The marginal likelihoods, $P(D|\mathcal{H}_i)$, are hard to compute in general.
- Resort to (not straightforward) numerical procedures^{1,2}
- Alternatively, use software with prepackaged default priors and data models^{3,4} (limited to specific models).

But: See bridge sampling by Quentin Gronau.

⁴Morey and Rouder (2022).

¹Chen, Shao, and Ibrahim (2000).

²Gamerman and Lopes (2006).

³JASP Team (2022).

3. Properties of the Bayes factor (EXTRA)

Use of 'default' Bayes factors

'Default' Bayes factors lack justification

- Priors matter a lot for Bayes factors.
- 'Objective' bayesians advocate using predefined priors for testing. 1,2,3
- Albeit convenient, default priors lack empirical justification.⁴
- 'Objective priors' were derived under strong requirements^{5,6}, which impose strong restrictions on the priors ("appearance of objectivity").
- Defaults are only useful to the extent that they adequately translate one's beliefs.^{8,9}
- Some default priors, like the now famous JZS prior^{10,11,12}, still require a specification of a scale parameter. Its default value has also changed over time.^{13,14}

¹ leffreys (1961).

²Berger and Pericchi (2001).

³Rouder et al. (2009).

⁴Robert (2016).

⁵Bavarri et al. (2012).

⁶Berger and Pericchi (2001).

⁷Berger and Pericchi (ibid.).

⁸ Kruschke (2011).

⁹Kruschke and Liddell (2018b).

¹⁰ Jeffreys (1961).

¹¹ Zellner and Siow (1980).

¹² Rouder et al. (2009).

¹⁴ Morey and Rouder (2022).

Bayes factors do not imply a model is probably correct

3. Properties of the Bayes factor (EXTRA)

Bayes factors do not imply a model is correct

- A large Bayes factor, say, $BF_{10} = 100$, may mislead one to belief that \mathcal{H}_1 is true or at least more useful.
- Bayes factors are only a measure of relative plausibility among two competing models.
- \blacksquare \mathcal{H}_1 might actually be a dreadful model (e.g., lead to horribly wrong predictions), but simply less dreadful than its alternative \mathcal{H}_0 .¹
- Bayes factors provide no absolute evidence supporting either model under comparison.²
- Little is known as to how Bayes factors behave under model misspecification (but see³).

In general, it seems best to:

- Avoid thinking about truth / falsehood.
- Instead, think about evidence in favor / against of a model.
- Bayes factors can indeed assist with this.

3. Properties of the Bayes factor (EXTRA)

Qualitative interpretation of Bayes factors

Interpretation of Bayes factors can be ambiguous

- Bayes factors are a continuous measure of evidence in $[0, \infty)$:
 - $BF_{01} > 1$: Data are more likely under \mathcal{H}_0 than under \mathcal{H}_1 . The larger BF_{01} , the stronger the evidence for \mathcal{H}_0 over \mathcal{H}_1 .
 - $BF_{01} < 1$: Data are more likely under \mathcal{H}_1 than under \mathcal{H}_0 . The smaller BF_{01} , the stronger the evidence for \mathcal{H}_1 over \mathcal{H}_0 .
- But, how 'much more' likely?
- Answer is not unique: Qualitative interpretations of strength are subjective (what is weak?, moderate?, strong?),1,2,3,4

This is not a problem of Bayes factor per se, but of practitioners requiring qualitative labels for test results.

² Kass and Raftery (1995).

¹ leffrevs (1961).

³ Lee and Wagenmakers (2013).

3. Properties of the Bayes factor (EXTRA)

Bayes factors test model classes

Bayes factors test model *classes*

Consider testing $\mathcal{H}_0: \theta = \theta_0$ vs $\mathcal{H}_1: \theta \neq \theta_0$. Then

$$B_{01} = \frac{p(D|\mathcal{H}_0)}{p(D|\mathcal{H}_1)}, \quad \text{with} \quad p(D|\mathcal{H}_1) = \int p(D|\theta, \mathcal{H}_1) p(\theta|\mathcal{H}_1) d\theta.$$

- $p(D|\mathcal{H}_1)$ is a weighted likelihood for a model class: Each parameter value θ defines one particular model in the class.
- Bayes factors as ratios of likelihoods of model classes.¹
- E.g., $BF_{01} = 1/5$: The data are five times more likely under the model class under \mathcal{H}_1 , averaged over its prior distribution, than under \mathcal{H}_0 .
- Catch: The most likely model class need not include the true model that generated the data.
 I.e., the Bayes factor may fail to indicate the class that includes the data-generating model (in case it exists, of course).²

1Liu and Aitkin (2008)

3. Properties of the Bayes factor (EXTRA)

Bayes factors favor point \mathcal{H}_0

Bayes factors don't favor one-sided \mathcal{H}_0

- Surprisingly, the point null-based result does not hold for one-sided \mathcal{H}_0 (e.g., comparing $\mu > 0$ and $\mu < 0$).^{1,2}
- In this case, $p(\mathcal{H}_0|D)$ and p-values can be very close under a wide range of priors.

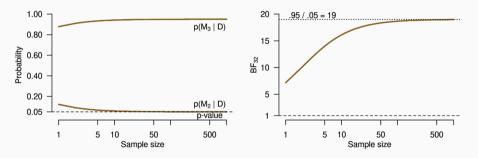


Figure 6: Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_2: \mu \sim N^+(0, \sigma_1^2 = 1)$ vs $\mathcal{H}_3: \mu \sim N^-(0, \sigma_1^2 = 1)$.

^{1&}lt;sub>Pratt</sub> (1965). ²Casella and Berger (1987).

Bayes factors don't favor one-sided \mathcal{H}_0

Tuning just-significant ESs with Bayes factors:

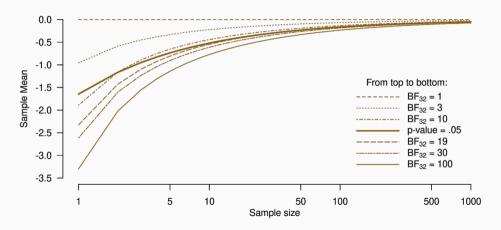


Figure 7: ESs required by BF_{32} , based of Jeffreys (1961) taxonomy.

Bayes factors don't favor one-sided \mathcal{H}_0

- $p(\mathcal{H}_0|D)$ can be equal or even smaller than the p-value.
- \blacksquare 'p-values overstate evidence against $\mathcal{H}_0' \longrightarrow \text{Not always.}^2$

Who to blame for this state of affairs?

We suggest the nature of the point null hypothesis: we are not alone.^{3,4} But others have argued in favor point of null hypotheses. 5,6,7,8,9,10

'True' point hypotheses, really?!^{11,12,13}

6 Kass and Raftery (1995).

11 Berger and Delampady (1987).

12 Cohen (1994)

¹Casella and Berger (1987).

² Jeffreys (1961).

³Casella and Berger (1987).

⁴ Vardeman (1987).

⁵ Berger and Delampady (1987).

⁷ Gallistel (2009)

⁸ Koniin et al. (2015).

¹⁰ Morev and Rouder (2011).

¹³ Morey and Rouder (2011). ⁹Marden (2000).

3. Properties of the Bayes factor (EXTRA)

Bayes factors favor \mathcal{H}_a

Bayes factors favor \mathcal{H}_a , II

- Consider $\mathcal{H}_0: \theta = \theta_0$ vs $\mathcal{H}_0: \theta \neq \theta_0$.
- As $n \to \infty$, Bayes factors accumulate evidence in favor of true \mathcal{H}_1 much faster than they accumulate evidence in favor of true \mathcal{H}_0 .
- I.e., although Bayes factors allow drawing support for either model, they do so asymmetrically.¹

¹ Johnson and Rossell (2010).

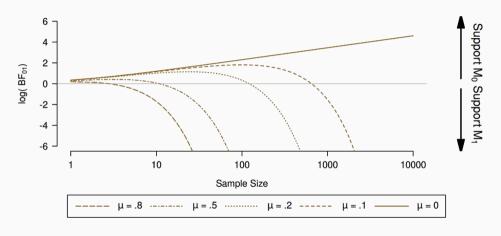


Figure 8: Data: $Y_i \sim N(\mu, \sigma^2 = 1)$. $\mathcal{H}_0: \mu = 0$ vs $\mathcal{H}_1: \mu \sim N(0, \sigma_1^2 = 1)$.

Bayes factors often agree with p-values

3. Properties of the Bayes factor (EXTRA)

Bayes factors often agree with p-values

p-values are often accused of being 'violently biased against the null hypothesis'. ^{1,2} But this is not always true. ³

Trafimow's argument:

Consider $p(D|\mathcal{H}_1)$, i.e., the likelihood of the observed data under the *alternative* model.

$$p(\mathcal{H}_0|D) = \frac{p(\mathcal{H}_0)p(D|\mathcal{H}_0)}{p(\mathcal{H}_0)p(D|\mathcal{H}_0) + [1 - p(\mathcal{H}_0)]p(D|\mathcal{H}_1)}$$

Suppose p is small (say, < .05).

- If $p(D|\mathcal{H}_1)$ is very small then $p(\mathcal{H}_0|D)$ is close to 1 for $p(D|\mathcal{H}_0)$ fixed. Disagreement with p.
- But, if $p(D|\mathcal{H}_1)$ is large then $p(\mathcal{H}_0|D)$ is small. Agreement with p.

Bayes factors often agree with p-values

Conclusion:

When data are more likely under \mathcal{H}_1 than under \mathcal{H}_0 , Bayes factors and p-values tend to agree with each other.

The p-value, by definition, is oblivious to the likelihood of the data under \mathcal{H}_1 .

This is why the p-value is sometimes biased against \mathcal{H}_0 .

NHBT allows drawing support for \mathcal{H}_0 , unlike NHST.

So, large p-values cannot be used as evidence in favor of \mathcal{H}_0 , but large BF_{01} values can.