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Bayes rule

» D =data
» 6 = unknown parameter

_ p)p(Do)
p(0|D) = (D)

In words,

= prior xlikelihood

p osterio evidence

The evidence does not depend on 0; let’s hide it:

posterior o prior x likelihood

The symbol « means “proportional to”.
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Bayes rule

posterior o prior x likelihood ‘

» Prior: Belief about the ‘true’ value of 6, before looking at the data.
» Likelihood: The statistical model, linking 6 to data.

» Posterior: Updated knowledge about 6, in light of the observed
data.

Let’s look at the Bayes rule from various angles.
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Bayes rule — ABC

One useful way to think about the Bayes rule is by considering
Approximate Bayesian Computation (ABC; see Wiki).

» ABC is actually computationally very inefficient.

» But, it is conceptually very clear!
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https://en.wikipedia.org/wiki/Approximate_Bayesian_computation

Bayes rule — ABC
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Bayes rule — ABC

The Bayes rule from the ABC perspective:
Find the values of 6 that allow the model to predict data pretty much
like our observed data.

Humm. ..

Maximum likelihood estimation, anyone?

Bayesian inference can be conceptually thought of as an extension of
MLE!
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Bayes rule — Inverse probability

Bayes rule allows reversing conditional probabilities.

_ p(A)pBlA)
p(A|B) = B

Consider the canonical example:

» A :Have disease.
» B : Test positive.

Then:

» p(B|.A) : Probability of testing positive given that one has the
disease.
Test’s sensitivity.

» p(A|B) : Probability of having the disease given that (s)he tests
positive.
What patients really want to know.
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Bayes rule — Updating beliefs

Definition of probability:

» Frequentist: Long-run relative frequency.
(Problem: p(Pandemic is over in 2022)?...)

» Bayesian: Degree of subjective belief.

posterior o prior x likelihood ‘

» Bayes rule is a rational means of updating our current belief (prior)
by means of observed data (likelihood).
» “Today’s posterior is tomorrow’s prior” — Lindley (1970)
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Bayes rule — Summary

’ posterior o prior x likelihood

Bayesian modelling requires three ingredients:
» Data.
» Priors, reflecting our subjective belief about the parameters.

> A statistical model, relating parameters to data.

Bayes rule is a mathematically rigorous means to combine prior
information on parameters with the data, using the statistical model as
the bridge between both.
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Bayes rule — Example

Data here:
https://dasl.datadescription.com/datafile/bodyfat/.

» Various measurements of 250 men.

» To keep it simple: I dichotomize the percentage of body fat (PBF).

» 0 =PBF lower than 25%;
1 = PBF larger than 25%.

» Goal: Infer the proportion of obese men in the population.

Let’s denote the population proportion by 6.
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https://dasl.datadescription.com/datafile/bodyfat/

Bayes rule — Example
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Bayes rule — Example

Let’s use the Bayesian machinery.

Recall that we need three ingredients:

» Data.
» Prior.
» Model.
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Bayes rule — Example

Data. For now, let’s only use the first 10 scores.
» Sample size: 10
» Number of men with PBF > 25%: 2

» Sample proportion: 6= 1% =.20

ojofJ1JoJ1]ofJo]ofo0]O
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Bayes rule — Example

Model. We'll use the binomial model. Assumptions:

» Independence between measurements.
» One population with underlying rate 0.

» Random sample.
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Bayes rule — Example

Prior. We'll try several.
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Bayes rule — Example

What happens if the prior is ‘uninformative’?

16 /54



Bayes rule — Example
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Bayes rule — Example

Prior
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Bayes rule — Example

What happens if the prior is ‘very informative’?
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Bayes rule — Example
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Bayes rule — Example

What happens if neither the prior nor the likelihood dominates?
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Bayes rule — Example
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Bayes rule — Example
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Bayes rule — Example

Let’s now use all the data.
» Sample size: 250
» Number of men with PBF > 25%: 64

» Sample proportion: 6= 250 = .256

How does Bayes updating look like now, when the data dominate?
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Bayes rule — Example
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Bayes rule — Example
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Bayes rule — Example
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Bayes rule — Example
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Bayes rule — Some conclusions

» Bayes rule highlights the parameter values that make the
observed data look more plausible.

» The posterior distribution is a compromise between the
information in the prior and the information in the data.
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Bayes rule — Some conclusions

How do priors typically affect posterior distributions?
» For ‘uninformative’ priors, posterior ~ likelihood.

» For ‘very informative’ priors, posterior ~ prior.
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Bayes rule — Some conclusions

How do data typically affect posterior distributions?
» For small sample sizes, posterior ~ prior.

» For large sample sizes, posterior ~ likelihood.
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Bayesian inference — Some criticism

I think I can hear some of you thinking right now...

“Hey, but there are sooo many posterior distributions!”
“This seems all sooo subjective!”

“I sooo don’t like it!”

~(

Fair points.

Let me offer several counter-arguments.
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Bayesian inference — Counterarguments to criticism

1. Posterior distributions are fairly stable across a wide range of
reasonable priors, for large data sets.

More data = more information = more certainty.
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Bayesian inference — Counterarguments to criticism

Priors
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Bayesian inference — Counterarguments to criticism

2. Illusion of certainty: Pretending that results tell us more than is
actually possible.
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Bayesian inference — Counterarguments to criticism

There is subjectivity in each step of the scientific way:

> Selection of participants.

» Number of assessments.

» Variables to measure.

» Variables to control.

» Variability across researchers / labs.

» Statistical model to use.

» Variables to (not) include in the model.
> ...

Then, try topping it up with few and noisy data. ..
It is fair, logical, necessary, that statistical inference reflects uncertainty.

Do embrace uncertainty!
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Bayesian inference — Counterarguments to criticism

Posterior (N = 250)
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Bayesian inference — Counterarguments to criticism

3. Priors allow incorporating useful information.

» What is known about the parameter?

Let’s not pretend we do not know anything.
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Bayesian inference — Counterarguments to criticism

0.0 0.2 0.4 0.6 0.8 1.0

39/54



Bayesian inference — Counterarguments to criticism

About PBF:

» Itis actually known that the proportion of obese men in (some...)
population is about 40%.

» We can (we should!) take this into account.

» And that is what the prior is for.

(Do you know how much variability to expect?
Then include this in the prior too!!)

One of Bayes’ advantages: Accummulation of evidence.
Use it!
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https://en.wikipedia.org/wiki/Obesity_in_the_United_States

Bayesian inference — Counterarguments to criticism
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Bayesian inference — Counterarguments to criticism

Of course, strange things can occur.

“A Bayesian is one who, vaguely expecting a horse, and catch-
ing a glimpse of a donkey, strongly believes he has seen a mule.”
(Stephen Senn)

(Inspired by Aki Vehtari and John Kruschke.)
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https://twitter.com/avehtari/status/1218896617346162688
http://doingbayesiandataanalysis.blogspot.com/2011/07/horses-donkies-and-mules.html

Bayesian inference — Counterarguments to criticism
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Bayesian inference — Summarize results

The posterior distribution is the Holy Grail in Bayesian statistics.

It reflects our current knowledge of the world, conditional on:
» The chosen model.
» The chosen prior(s).

» The observed data.

How can we summarize the information in the posterior distribution?
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Bayesian inference — Summarize results

Posterior (N = 250)
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Bayesian inference — Summarize results

Point estimates.
Commonly used:

> posterior mean
» posterior mode

» posterior median.

For the PBF data based on 250 scores:
post. mean ~ post. mode ~ post. median ~ .26.

(Recall: 6 = .256.)
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Bayesian inference — Summarize results
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Bayesian inference — Summarize results

Interval estimates.
I will focus on the 95% credible interval throughout.

There are some variants (do not overly worry about these nuances):

» Central 95% credible interval.
With 2.5% probability out on each tail.

» 95% HDI (highest density interval).
The shortest interval covering area .95.

For the PBF data they practically coincide.
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Bayesian inference — Summarize results
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Bayesian inference — Summarize results
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Bayesian inference — Summarize results

The posterior distribution allows computing probabilities for any
events involving parameters.

For instance:

» What is the (posterior) probability that the population proportion
of obese men is larger than 30%?

» What is the (posterior) probability that the population proportion
of obese men is between 20% and 30%?
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Bayesian inference — Summarize results

Posterior (N = 250)
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Bayesian inference — Summarize results

Posterior (N = 250)
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Next

Specific examples will be dealt with in Part 2.

More concepts will be introduced as we proceed.

Now where’s that cup of coffee?
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