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Joint work with Henk Kiers and Don van Ravenzwaaij.
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AKA:
Sequential testing.

Definition:
Continuously testing a null hypothesis (H0) as data are collected until H0 is rejected.
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Procedure:
1 Collect some data.

2 Perform the test (α and nmax chosen in advance):
Compute p and…

…if p < α: STOP and retain H1 .
…if p > α: Back to 1.

3 Continue until either conclusive evidence is found or nmax is reached.

Known for a long time to be very problematic:

Based on null hypothesis significance testing (NHST).
NHST has a lot of problems.1

In particular2,3 : Too high proportions of false positives (≫ α).

1Wasserstein, Schirm, and Lazar (2019). 2Armitage, McPherson, and Rowe (1969). 3Jennison and Turnbull (1990).
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Example:
One-sample t-test: H0 : µ = 0 vs H0 : µ ̸= 0.
Repeat 1,000 times:

Sampling plan: n = 2(1)1, 000, 000 from N (0, 1).
Stop if p < α = .05.



OPTIONAL STOPPING - FREQUENTIST STATISTICS 5 / 17

Some ways to avoid this problem:

Using corrections1,2,3,4,5,6,7,8 .
Not commonly used in psychology.
Not using optional stopping
(i.e., fixed sample size, sample until completion).
Turning to the Bayesian paradigm.

1Armitage (1960).
2Botella et al. (2006).
3Fitts (2010).

4Frick (1998).
5Jennison and Turnbull (1999).
6Lakens (2014).

7Pocock (1983).
8Wald (1945).
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NHBT1,2,3,4 is the Bayesian counterpart to NHST.

It uses the Bayes factor in place of the p-value.

Definition 1:
The Bayes factor quantifies the update in our relative belief about the likelihood of
two hypotheses (H0, H1) in light of the observed data (D):

p(H1)

p(H0)︸ ︷︷ ︸
prior odds

×
p(D|H1)

p(D|H0)︸ ︷︷ ︸
BF10

=
p(H1|D)

p(H0|D)︸ ︷︷ ︸
posterior odds

Definition 2:
The Bayes factor indicates the relative predictive value of each model.

E.g., if the observed data are better predicted under H1 than under H0 then
p(D|H1) > p(D|H0) and so BF10 > 1.

1Jeffreys (1961).
2Kass and Raftery (1995).

3Tendeiro and Kiers (2019).
4van de Schoot et al. (2017).
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Procedure:1,2,3

1 Collect some data.

2 Perform the test (BFL, BFU , and nmax chosen in advance):
Compute BF10 and…

…if BF10 < BFL : Stop and retain H0 .
…if BF10 > BFU : Stop and retain H1 .
…if BFL < BF10 < BFU : Back to 1.

3 Continue until either conclusive evidence is found or nmax is reached.

One major improvement of Bayesian over frequentist optional stopping:

The Bayesian procedure can stop due to sufficiently strong evidence in favor
of H0.

1Lindley (1957). 2Edwards, Lindman, and Savage (1963). 3Kass and Raftery (1995).
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It has been argued through the years that optional stopping under the Bayesian
paradigm is allowed.1,2,3,4,5

It has even been further develped and used in practice.6,7,8,9,10

However, two recent papers disputed this state of affairs11,12 (also13 ).

Rouder offered a rebuttal to these ideas in 2014.
Title: ‘Optional stopping: No problem for Bayesians’.14

1Edwards, Lindman, and Savage (1963).
2Kass and Raftery (1995).
3Wagenmakers (2007).
4Wagenmakers et al. (2010).
5Francis (2012).

6Matzke et al. (2015).
7Schönbrodt et al. (2017).
8Schönbrodt and Wagenmakers (2018).
9Wagenmakers et al. (2012).
10Wagenmakers et al. (2015).

11Yu et al. (2014).
12Sanborn and Hills (2014).
13de Heide and Grünwald (2017).
14Rouder (2014).
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Yu et al. (2014) and Sanborn & Hills (2014) questioned the long run properties of the
Bayesian optional stopping procedure.

Rouder (2014) argued that there was no problem in a particular sense.

Let’s visualize the argument:

Data: Xi ∼ N (µ, σ2), for i = 1, . . . , n and σ known.
H0 : µ = 0.
H1 : µ ∼ N (0, σ2

1 ), for σ1 known.
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Rouder claimed that Bayes factors are well calibrated under optional stopping.

The argument goes as follows:

Assume prior odds equal to 1, so:

p(D|H1)

p(D|H0)︸ ︷︷ ︸
BF10

=
p(H1|D)

p(H0|D)︸ ︷︷ ︸
posterior odds

.

By definition of posterior odds:
H1 is BF10 times more likely than H0 after considering the data.

Rouder made two assertions:

1 Assertion 1: For any given value BF10,
H1 is BF10 times more likely than H0 to have generated BF10.

2 Assertion 2: The above statement also holds under optional stopping.
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In our paper, we:

Considered the same two tests as Rouder (2014):
Both tests about the mean of a normal distribution N (µ, σ2), σ known.
First test:
H0 : µ = 0 versus H1 : µ = µ1 .
Second test:
H0 : µ = 0 versus H1 : µ ∼ N (0, σ2

1 ), σ1 known.

Derived exact probability distributions for BF10.
Proved Assertion 1 for n fixed.
Proved Assertion 2 after one step of the optional stopping procedure.
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We offer a mathematical proof to a Bayes factor property suggested by Rouder (2014).

Is this conclusive evidence that Bayesian optional stopping is allowed?
Well, not just yet.1

However, in a very recent reply, Rouder again disagrees…
https://psyarxiv.com/m6dhw/

To be continued…

1de Heide and Grünwald (2017).

https://psyarxiv.com/m6dhw/
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