# ROBUSTNESS OF NULL HYPOTHESIS BAYESIAN TESTING UNDER OPTIONAL STOPPING

Jorge N. Tendeiro IMPS 2020 – July 14

University of Groningen

Joint work with Henk Kiers and Don van Ravenzwaaij.

AKA: Sequential testing.

#### Definition:

Continuously testing a null hypothesis  $(\mathcal{H}_0)$  as data are collected until  $\mathcal{H}_0$  is rejected.

#### Procedure:

Collect some data.

- **2** Perform the test ( $\alpha$  and  $n_{max}$  chosen in advance): Compute p and...
  - ... if  $p < \alpha$ : STOP and retain  $\mathcal{H}_1$ .
  - ... if  $p > \alpha$ : Back to 1.
- **3** Continue until either conclusive evidence is found or  $n_{\text{max}}$  is reached.

Known for a long time to be very problematic:

- Based on null hypothesis significance testing (NHST).
- NHST has a lot of problems.<sup>1</sup>
- In particular<sup>2,3</sup> : Too high proportions of false positives ( $\gg \alpha$ ).

#### Example:

• One-sample *t*-test:  $\mathcal{H}_0: \mu = 0$  vs  $\mathcal{H}_0: \mu \neq 0$ .

#### Repeat 1,000 times:

■ Sampling plan: n = 2(1)1,000,000 from  $\mathcal{N}(0,1)$ .

Stop if 
$$p < \alpha = .05$$
.



Some ways to avoid this problem:

- Using corrections<sup>1,2,3,4,5,6,7,8</sup>.
   Not commonly used in psychology.
- Not using optional stopping (i.e., fixed sample size, sample until completion).
- Turning to the Bayesian paradigm.

<sup>1</sup>Armitage (1960). <sup>2</sup>Botella et al. (2006). <sup>3</sup>Fitts (2010). <sup>4</sup>Frick (1998). <sup>5</sup>Jennison and Turnbull (1999). <sup>6</sup>Lakens (2014). <sup>7</sup> Pocock (1983). <sup>8</sup> Wald (1945). NHBT<sup>1,2,3,4</sup> is the Bayesian counterpart to NHST.

It uses the Bayes factor in place of the *p*-value.

#### Definition 1:

The Bayes factor quantifies the *update* in our relative belief about the likelihood of two hypotheses ( $\mathcal{H}_0$ ,  $\mathcal{H}_1$ ) in light of the observed data (*D*):

$$\underbrace{\frac{p(\mathcal{H}_1)}{p(\mathcal{H}_0)}}_{\text{prior odds}} \times \underbrace{\frac{p(D|\mathcal{H}_1)}{p(D|\mathcal{H}_0)}}_{BF_{10}} = \underbrace{\frac{p(\mathcal{H}_1|D)}{p(\mathcal{H}_0|D)}}_{\text{posterior odds}}$$

#### **Definition 2:**

The Bayes factor indicates the relative predictive value of each model.

E.g., if the observed data are better predicted under  $\mathcal{H}_1$  than under  $\mathcal{H}_0$  then  $p(D|\mathcal{H}_1) > p(D|\mathcal{H}_0)$  and so  $BF_{10} > 1$ .

<sup>1</sup>Jeffreys (1961). <sup>2</sup>Kass and Raftery (1995). <sup>3</sup>Tendeiro and Kiers (2019). <sup>4</sup>van de Schoot et al. (2017).

#### Procedure:1,2,3

```
    Collect some data.
```

- **2** Perform the test ( $BF_L$ ,  $BF_U$ , and  $n_{max}$  chosen in advance): Compute  $BF_{10}$  and...
  - ...if  $BF_{10} < BF_L$ : Stop and retain  $\mathcal{H}_0$ .
  - ...if  $BF_{10} > BF_U$ : Stop and retain  $\mathcal{H}_1$ .
  - ...if  $BF_L < BF_{10} < BF_U$ : Back to 1.
- **3** Continue until either conclusive evidence is found or  $n_{max}$  is reached.

One *major* improvement of Bayesian over frequentist optional stopping:

The Bayesian procedure can stop due to sufficiently strong evidence in favor of  $\mathcal{H}_{0}.$ 

- It has been argued through the years that optional stopping under the Bayesian paradigm is allowed.<sup>1,2,3,4,5</sup>
- It has even been further develped and used in practice.<sup>6,7,8,9,10</sup>
- However, two recent papers disputed this state of affairs<sup>11,12</sup> (also<sup>13</sup>).

Rouder offered a rebuttal to these ideas in 2014. Title: 'Optional stopping: No problem for Bayesians'.<sup>14</sup>

<sup>1</sup>Edwards, Lindman, and Savage (1963). <sup>2</sup>Kass and Raftery (1995). <sup>3</sup>Wagenmakers (2007). <sup>4</sup>Wagenmakers et al. (2010). <sup>5</sup>Francis (2012). <sup>6</sup> Matzke et al. (2015).
 <sup>7</sup> Schönbrodt et al. (2017).
 <sup>8</sup> Schönbrodt and Wagenmakers (2018).

<sup>9</sup>Wagenmakers et al. (2012).

<sup>10</sup>Wagenmakers et al. (2015).

<sup>11</sup>Yu et al. (2014). <sup>12</sup>Sanborn and Hills (2014). <sup>13</sup>de Heide and Grünwald (2017). <sup>14</sup>Rouder (2014). Yu et al. (2014) and Sanborn & Hills (2014) questioned the *long run properties* of the Bayesian optional stopping procedure.

Rouder (2014) argued that there was no problem in a particular sense.

Let's visualize the argument:

- **Data:**  $X_i \sim \mathcal{N}(\mu, \sigma^2)$ , for  $i = 1, \ldots, n$  and  $\sigma$  known.
- $\blacksquare \mathcal{H}_0: \mu = 0.$
- $\mathcal{H}_1: \mu \sim \mathcal{N}(0, \sigma_1^2)$ , for  $\sigma_1$  known.

#### **OPTIONAL STOPPING - BAYESIAN STATISTICS**



Rouder claimed that Bayes factors are well calibrated under optional stopping. The argument goes as follows:

Assume prior odds equal to 1, so:



By definition of posterior odds:

 $\mathcal{H}_1$  is  $\mathit{BF}_{10}$  times more likely than  $\mathcal{H}_0$  after considering the data.

Rouder made two assertions:

Assertion 1: For any given value BF<sub>10</sub>,

 *H*<sub>1</sub> is BF<sub>10</sub> times more likely than *H*<sub>0</sub> to have generated BF<sub>10</sub>.

2 Assertion 2: The above statement also holds under optional stopping.

In our paper, we:

- Considered the same two tests as Rouder (2014):
  - Both tests about the mean of a normal distribution  $\mathcal{N}(\mu, \sigma^2)$ ,  $\sigma$  known.
  - First test:

```
\mathcal{H}_0: \mu = 0 versus \mathcal{H}_1: \mu = \mu_1.
```

Second test:

 $\mathcal{H}_0: \mu = 0$  versus  $\mathcal{H}_1: \mu \sim \mathcal{N}(0, \sigma_1^2)$ ,  $\sigma_1$  known.

- Derived exact probability distributions for *BF*<sub>10</sub>.
- Proved Assertion 1 for n fixed.
- Proved Assertion 2 after one step of the optional stopping procedure.

### RESULTS

 $\overline{\mathcal{H}_0:\mu}=0$  vs  $\mathcal{H}_1:\mu=\mu_1$ , n observations (Assertion 1)



## $\mathcal{H}_0$ : $\mu = 0$ vs $\mathcal{H}_1$ : $\mu = \mu_1$ , (n+k) observations (Assertion 2)



## $\mathcal{H}_0:\mu=0$ vs $\mathcal{H}_1:\mu\sim\mathcal{N}(0,\sigma_1^2)$ , n observations (Assertion 1)



 $\mathcal{H}_0: \mu=0$  vs  $\mathcal{H}_1: \mu\sim\mathcal{N}(0,\sigma_1^2)$ , (n+k) observations (Assertion 2)



DISCUSSION

We offer a mathematical proof to a Bayes factor property suggested by Rouder (2014).

Is this conclusive evidence that Bayesian optional stopping is allowed? Well, not just yet.<sup>1</sup>

However, in a very recent reply, Rouder again disagrees... https://psyarxiv.com/m6dhw/

To be continued...

<sup>1</sup>de Heide and Grünwald (2017).

## THANK YOU!