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Worked-out example

I will illustrate Bayesian analyses by means of an example.

General Bayesian workflow:

I Process data, descriptives.
I Build Bayesian models.
I Assess models through prior predictive checks.
I Fit the models to the data.
I MCMC diagnostics.
I Assess model fit through posterior predictive checks.
I Model comparison, summarize, report inferences.
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Running example
Theory of mind in remitted bipolar disorder

Paper:
Espinós, U., Fernandéz-Abascal, E. G., & Ovejero, M. (2019). Theory of mind in remitted
bipolar disorder: Interpersonal accuracy in recognition of dynamic nonverbal signals. PLoS
ONE, 14(9), e0222112. doi: 10.1371/journal.pone.0222112.

Data:
https://www.kaggle.com/mercheovejero/
theory-of-mind-in-remitted-bipolar-disorder
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Study

Goal:
Examine interpersonal accuracy (IPA) in remitted patients with bipolar
disorder (BD).

Groups:

I BD I
I BD II
I Unipolar depression (UD)
I Control

Dependent variable:
Number-correct score on the MiniPONS test to assess IPA.

Analysis:
ANCOVA model, with Age as covariate.
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Descriptives

y

Group n mean SD

BD I 70 45.1 4.9
BD II 49 45.7 4.7
Control 119 50.2 3.7
UD 39 42.7 5.0

Age

Group n mean SD

BD I 70 44.5 11.5
BD II 49 49.9 11.5
Control 119 46.1 10.8
UD 39 62.9 9.7
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Build Bayesian models

Model Formula Obs.

M1 y ∼ 1 baseline
M2 y ∼ Age simple regression
M3 y ∼ Group ANOVA
M4 y ∼ Group + Age ANCOVA
M5 y ∼ Group + Age + Group×Age Heterog. slopes ANCOVA
M6 y ∼ Group + Age constrained ANCOVA

(µControl = µUD)

Espinós et al. (2019) focused on the ANCOVA model,M4.

Here we will also consider the other models and compare them.
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Basic Stan code for all models

data {
int<lower=0> N; // sample size
int<lower=0> K; // number of predictors
matrix[N, K+1] x; // predictor matrix (incl. intercept)
vector[N] y; // outcome variable

}

parameters {
vector[K+1] beta; // intercept + reg. coeffs.
real<lower=0> sigma; // SD residuals

}

model {
beta ~ normal(0, 10); // Prior reg. coeffs.
sigma ~ cauchy(0, 1); // Prior sigma
y ~ normal(x * beta, sigma); // Likelihood

}
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Assess models through
prior predictive checks
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Prior predictive checks

Ask yourself:
What type of data can my model generate, before I fit it to my own data?

Answer:
Perform prior predictive checks.

What’s that?
Look at data generated from your model (i.e., likelihood + priors).
−→ Akin to test-driving a car before buying it.

What am I looking for?
A model that is flexible enough, but not too wild.
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ANCOVA model

model {
beta ~ normal(0, 10); // Prior reg. coeffs.
sigma ~ cauchy(0, 1); // Prior sigma
y ~ normal(x * beta, sigma); // Likelihood

}

To sample from the prior predictive distribution, do this a few times:

I Sample beta from its prior N (0, 10), say betai.
I Sample sigma from its prior Cauchy(0, 1), say sigmai.
I Sample data from the likelihood N (x ∗ betai, sigmai), say yi.
I Plot yi.
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ANCOVA model

Flexible.
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ANCOVA model

What if we broaden the prior on beta?

model {
beta ~ normal(0, 100); // Prior reg. coeffs.
sigma ~ cauchy(0, 1); // Prior sigma
y ~ normal(x * beta, sigma); // Likelihood

}
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ANCOVA model

Yikes.
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ANCOVA model

What if we shrink the prior on beta?

model {
beta ~ normal(0, .1); // Prior reg. coeffs.
sigma ~ cauchy(0, 1); // Prior sigma
y ~ normal(x * beta, sigma); // Likelihood

}
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ANCOVA model

Ups.
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Fit the models to the data

I used R and rstan for the job.

All code is available at:
https://github.com/jorgetendeiro/GSMS-2020.
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MCMC diagnostics
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Trace plot

The chains mixed well.
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R-hat

All below, say, 1.05. Good.
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Effective sample size

All above, say, 0.1. Good.
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Auto-correlation

It approaches 0 rather quickly. Nice.
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Assess model fit through
posterior predictive checks
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Posterior predictive checks

Ask yourself:
How likely is your fitted model of generating data like you collected?

Answer:
Perform posterior predictive checks.

What’s that?
Compare observed data to data generated from your fitted model.
−→ Assess model fit.

What am I looking for?
Evidence that your data could have been generated from the fitted
model.
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Posterior predictive checks

Let’s first focus on the ANCOVA modelM4.
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Distribution of y
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Distribution of y per group
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Various statistics of y
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Posterior predictive checks

So the ANCOVA model seems to fit the data well.

How does the seemingly worse baselineM1 model do?
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Distribution of y

Not that bad!!
(But only because y ≈ N (·), which need not happen in general).
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Distribution of y per group

Humm, the Control and UD groups are misspecified.
(Of course, ‘Group’ was not modelled. . . )
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Various statistics of y

cor(y, Age) completely missed.
(Of course, ‘Age’ was not modelled. . . )
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Model comparison
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Leave-one-out cross validation (LOO-CV)

Idea:

I Models are compared based on out-of-sample expected predictive
accuracy.

I LOO-CV is efficiently approximated by means of PSIS-LOO
(Pareto smoothed importance sampling).

Interpretation:

I PSIS-LOO essentially provides a means to rank models.
I It doesn’t really quantify differences between models.
I However, as a rule of thumb, consider values of elpd_diff at least 4

times as large as its SE as noteworthy.
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Leave-one-out cross validation (LOO-CV)

Model elpd_diff se_diff looic

y ∼ Group + Age (ANCOVA) 0.0 0.0 1589.8
y ∼ Group + Age + Group×Age −2.4 1.2 1594.6
y ∼ Group −11.5 4.2 1612.7
y ∼ Group + Age, µControl = µUD −18.4 7.1 1626.7
y ∼ Age −38.3 7.9 1666.4
y ∼ 1 −58.1 8.6 1706.1

I Models are ordered from best to worst.
I Thus, ANCOVA appears to have the best predictive ability.
I Based on the ‘4SEs’ rule of thumb, we discard the last two models.

34 / 43



Bayes factors

I also tried to compare models using Bayes factors.
I have a lot to say about BFs, not all of it is good.

Idea:
Bayes factors compare the models’ predictive ability for the observed
data. Thus:

Under which model are the observed data more likely?

Unfortunately, the results were tremendously sensitive to prior
specification.
I decided to leave them out.
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Summarize and report inferences
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Plots per group
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Contrast: µControl− µUD = 0
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All pairwise contrasts
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Prediction for one subject
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Posterior dists. σ, R2
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Summary

Mean SD 2.5% 97.5%

beta[1] 49.73 1.14 47.46 51.94
beta[2] 1.17 0.81 −0.40 2.79
beta[3] 5.36 0.64 4.08 6.61
beta[4] −0.36 0.95 −2.27 1.51
beta[5] −0.11 0.02 −0.15 −0.06

sigma 4.21 0.18 3.88 4.58
R2 0.36 0.04 0.28 0.42
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Conclusion

Bayesian modelling is very flexible:

I Checking model fit is very intuitive and visual.
I It is not that difficult to adapt the model, if needed be.
I It is possible to perform any inference that is a functional form of

the data or model parameters.
I It is possible to compare models, for various predictive criteria.
I No statistical significance required.
I All outcomes are stochastic:

You get to report the uncertainty in your results.
I The sky is the limit:

The types of models available are nearly endless.

Now you give it a go!
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