Introduction to Bayesian statistics Part 2 — Application

Jorge N. Tendeiro

Department of Psychometrics and Statistics Faculty of Behavioral and Social Sciences University of Groningen

Worked-out example

I will illustrate Bayesian analyses by means of an example.

General Bayesian workflow:

- ▶ Process data, descriptives.
- ▶ Build Bayesian models.
- ▶ Assess models through *prior* predictive checks.
- Fit the models to the data.
- ► MCMC diagnostics.
- ► Assess model fit through *posterior* predictive checks.
- ▶ Model comparison, summarize, report inferences.

Running example Theory of mind in remitted bipolar disorder

Paper:

Espinós, U., Fernandéz-Abascal, E. G., & Ovejero, M. (2019). Theory of mind in remitted bipolar disorder: Interpersonal accuracy in recognition of dynamic nonverbal signals. PLoS ONE, 14(9), e0222112. doi: 10.1371/journal.pone.0222112.

Data: https://www.kaggle.com/mercheovejero/ theory-of-mind-in-remitted-bipolar-disorder

Study

Goal:

Examine interpersonal accuracy (IPA) in remitted patients with bipolar disorder (BD).

Groups:

- ► BD I
- ► BD II
- ► Unipolar depression (UD)
- Control

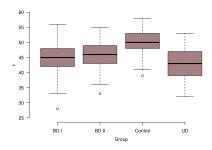
Dependent variable: Number-correct score on the MiniPONS test to assess IPA.

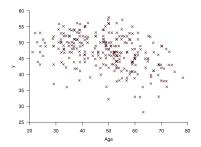
Analysis: ANCOVA model, with Age as covariate.

Descriptives

	y		
Group	п	mean	SD
BD I	70	45.1	4.9
BD II	49	45.7	4.7
Control	119	50.2	3.7
UD	39	42.7	5.0

Age				
Group	п	mean	SD	
BD I	70	44.5	11.5	
BD II	49	49.9	11.5	
Control	119	46.1	10.8	
UD	39	62.9	9.7	





Build Bayesian models

Model	Formula	Obs.
\mathcal{M}_1	$y \sim 1$	baseline
\mathcal{M}_2	$y \sim Age$	simple regression
\mathcal{M}_3	$y \sim \text{Group}$	ANOVA
\mathcal{M}_4	$y \sim \text{Group} + \text{Age}$	ANCOVA
\mathcal{M}_5	$y \sim \text{Group} + \text{Age} + \text{Group} \times \text{Age}$	Heterog. slopes ANCOVA
$\bar{\mathcal{M}}_6^-$	$y \sim \overline{\text{Group}} + Age$	constrained ANCOVA
		$(\mu_{\text{Control}} = \mu_{UD})$

Espinós et al. (2019) focused on the ANCOVA model, \mathcal{M}_4 .

Here we will also consider the other models and compare them.

Basic Stan code for all models

```
data {
 int<lower=0> N; // sample size
 int<lower=0> K; // number of predictors
 matrix[N, K+1] x; // predictor matrix (incl. intercept)
 vector[N] y; // outcome variable
3
parameters {
 vector[K+1] beta; // intercept + reg. coeffs.
 real<lower=0> sigma; // SD residuals
}
model {
 beta ~ normal(0, 10); // Prior reg. coeffs.
 sigma ~ cauchy(0, 1); // Prior sigma
 y ~ normal(x * beta, sigma); // Likelihood
```

Assess models through *prior* predictive checks

Prior predictive checks

Ask yourself: What type of data can my model generate, before I fit it to my own data?

Answer: Perform prior predictive checks.

What's that?

Look at data generated from your model (i.e., likelihood + priors). \longrightarrow Akin to test-driving a car before buying it.

What am I looking for? A model that is flexible enough, but not too wild.

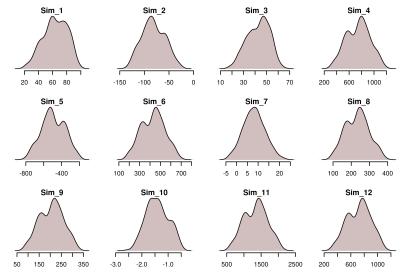
ANCOVA model

```
model {
   beta ~ normal(0, 10); // Prior reg. coeffs.
   sigma ~ cauchy(0, 1); // Prior sigma
   y ~ normal(x * beta, sigma); // Likelihood
}
```

To sample from the prior predictive distribution, do this a few times:

- Sample beta from its prior $\mathcal{N}(0, 10)$, say beta_{*i*}.
- ▶ Sample sigma from its prior Cauchy(0, 1), say sigma_i.
- Sample data from the likelihood $\mathcal{N}(x * \text{beta}_i, \text{sigma}_i)$, say y_i .
- ▶ Plot y_i .

ANCOVA model

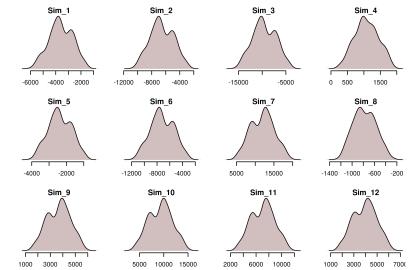


Flexible.

What if we broaden the prior on beta?

```
model {
   beta ~ normal(0, 100); // Prior reg. coeffs.
   sigma ~ cauchy(0, 1); // Prior sigma
   y ~ normal(x * beta, sigma); // Likelihood
}
```

ANCOVA model

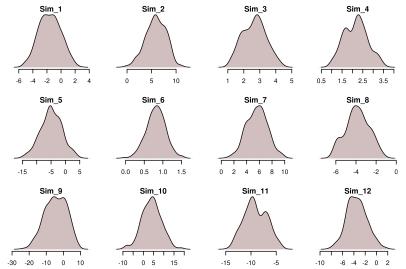


Yikes.

What if we shrink the prior on beta?

```
model {
   beta ~ normal(0, .1); // Prior reg. coeffs.
   sigma ~ cauchy(0, 1); // Prior sigma
   y ~ normal(x * beta, sigma); // Likelihood
}
```

ANCOVA model



Ups.

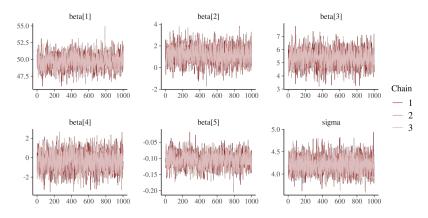
Fit the models to the data

I used R and rstan for the job.

All code is available at: https://github.com/jorgetendeiro/GSMS-2020.

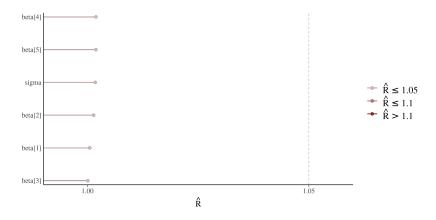
MCMC diagnostics

Trace plot



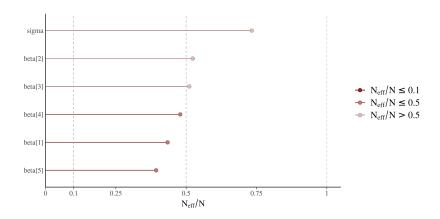
The chains mixed well.

R-hat



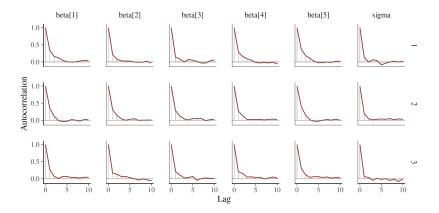
All below, say, 1.05. Good.

Effective sample size



All above, say, 0.1. Good.

Auto-correlation



It approaches 0 rather quickly. Nice.

Assess model fit through *posterior* predictive checks

Posterior predictive checks

Ask yourself: How likely is your fitted model of generating data *like* you collected?

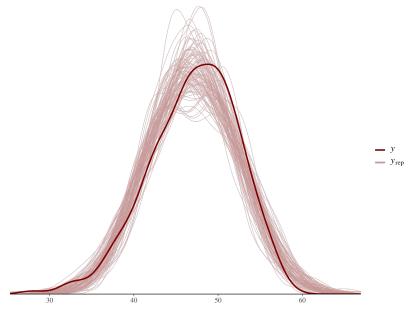
Answer: Perform posterior predictive checks.

What's that? Compare observed data to data generated from your *fitted* model. \rightarrow Assess model fit.

What am I looking for? Evidence that your data *could have been* generated from the fitted model. Posterior predictive checks

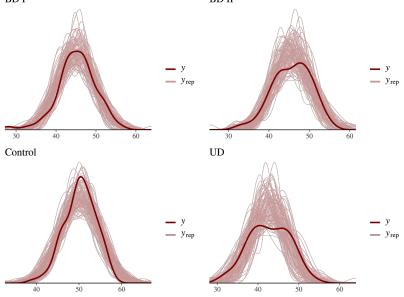
Let's first focus on the ANCOVA model \mathcal{M}_4 .

$Distribution \ of \ y$

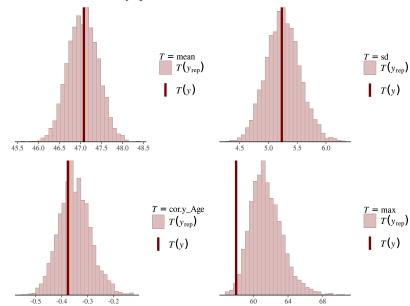


Distribution of y per group

BD II



Various statistics of y

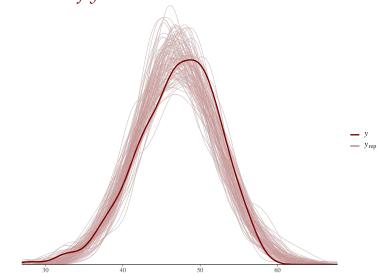


Posterior predictive checks

So the ANCOVA model seems to fit the data well.

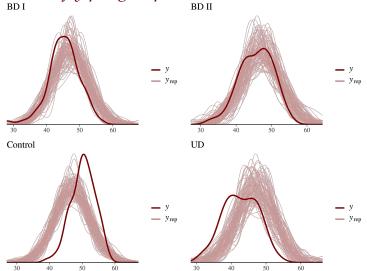
How does the seemingly worse baseline \mathcal{M}_1 model do?

Distribution of y

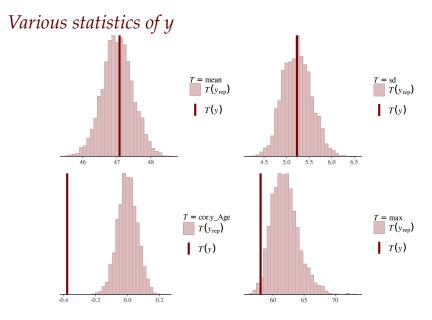


Not that bad!! (But only because $y \approx \mathcal{N}(\cdot)$, which need not happen in general).

Distribution of y per group



Humm, the Control and UD groups are misspecified. (Of course, 'Group' was not modelled...)



cor(y, Age) completely missed. (Of course, 'Age' was not modelled...) Model comparison

Leave-one-out cross validation (LOO-CV)

Idea:

- ► Models are compared based on out-of-sample *expected predictive accuracy*.
- LOO-CV is efficiently approximated by means of PSIS-LOO (Pareto smoothed importance sampling).

Interpretation:

- ▶ PSIS-LOO essentially provides a means to rank models.
- ► It doesn't really quantify differences between models.
- ► However, as a rule of thumb, consider values of *elpd_diff* at least 4 times as large as its SE as noteworthy.

Leave-one-out cross validation (LOO-CV)

Model	elpd_diff	se_diff	looic
$y \sim \text{Group} + \text{Age} (\text{ANCOVA})$	0.0	0.0	1589.8
$y \sim \text{Group} + \text{Age} + \text{Group} \times \text{Age}$	-2.4	1.2	1594.6
$y \sim \text{Group}$	-11.5	4.2	1612.7
$y \sim \text{Group} + \text{Age}, \mu_{\text{Control}} = \mu_{\text{UD}}$	-18.4	7.1	1626.7
$y \sim Age$	-38.3	7.9	1666.4
$y \sim 1$	-58.1	8.6	1706.1

- ► Models are ordered from best to worst.
- ▶ Thus, ANCOVA appears to have the best predictive ability.
- ▶ Based on the '4SEs' rule of thumb, we discard the last two models.

Bayes factors

I also tried to compare models using Bayes factors. I have a lot to say about BFs, not all of it is good.

Idea:

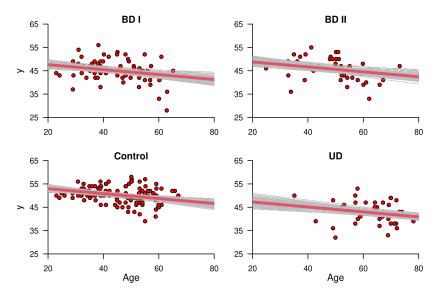
Bayes factors compare the models' predictive ability *for the observed data*. Thus:

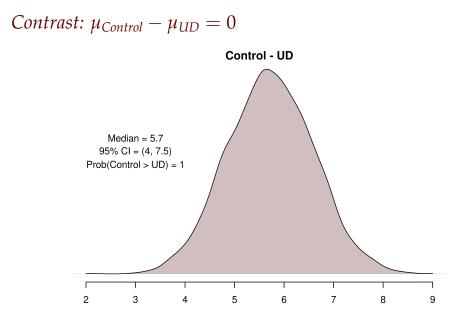
Under which model are the observed data more likely?

Unfortunately, the results were *tremendously* sensitive to prior specification. I decided to leave them out.

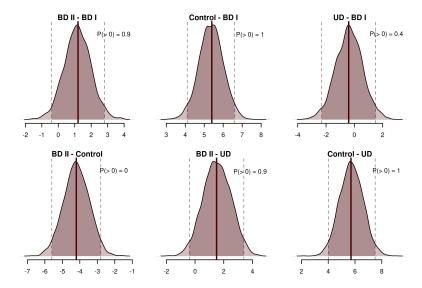
Summarize and report inferences

Plots per group

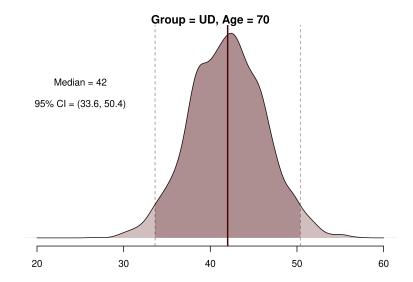




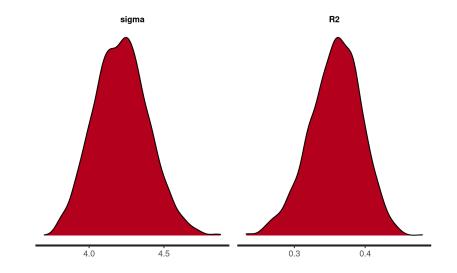
All pairwise contrasts



Prediction for one subject



Posterior dists. σ , R^2



Summary

	Mean	SD	2.5%	97.5%
beta[1]	49.73	1.14	47.46	51.94
beta[2]	1.17	0.81	-0.40	2.79
beta[3]	5.36	0.64	4.08	6.61
beta[4]	-0.36	0.95	-2.27	1.51
beta[5]	-0.11	0.02	-0.15	-0.06
sigma R2	4.21 0.36	0.18 0.04	3.88 0.28	4.58 0.42

Conclusion

Bayesian modelling is very flexible:

- Checking model fit is very *intuitive* and *visual*.
- ▶ It is not *that* difficult to adapt the model, if needed be.
- ► It is possible to perform *any* inference that is a functional form of the data or model parameters.
- ▶ It is possible to compare models, for various predictive criteria.
- ► No statistical significance required.
- ► All outcomes are *stochastic*:

You get to report the *uncertainty* in your results.

► The sky is the limit:

The types of models available are nearly endless.

Now you give it a go!