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Bayes rule

I D = data
I θ = unknown parameter

p(θ|D) = p(θ)p(D|θ)
p(D)

In words,

posterior = prior×likelihood
evidence

The evidence does not depend on θ; let’s hide it:

posterior ∝ prior× likelihood

The symbol ∝ means “proportional to”.
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Bayes rule

posterior ∝ prior× likelihood

I Prior: Belief about the ‘true’ value of θ, before looking at the data.
I Likelihood: The statistical model, linking θ to data.
I Posterior: Updated knowledge about θ, in light of the observed

data.

Let’s look at the Bayes rule from various angles.
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Bayes rule – ABC

One useful way to think about the Bayes rule is by considering
Approximate Bayesian Computation (ABC; see Wiki).

I ABC is actually computationally very inefficient.
I But, it is conceptually very clear!
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https://en.wikipedia.org/wiki/Approximate_Bayesian_computation


Bayes rule – ABC
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Bayes rule – ABC

The Bayes rule from the ABC perspective:
Find the values of θ that allow the model to predict data pretty much
like our observed data.

Humm. . .

Maximum likelihood estimation, anyone?

Bayesian inference can be thought of as an extension of MLE!
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Bayes rule – Inverse probability

Bayes rule allows reversing conditional probabilities.

p(A|B) = p(A)p(B|A)
p(B)

Consider the canonical example:

I A : Have disease.
I B : Test positive.

Then:

I p(B|A) : Probability of testing positive given that one has the
disease.
Test’s sensitivity.

I p(A|B) : Probability of having the disease given that (s)he tests
positive.
What patients really want to know.
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Bayes rule – Updating beliefs

Definition of probability:

I Frequentist: Long-run relative frequency.
(Problem: p(Trump winning 2020 election)?. . . )

I Bayesian: Degree of subjective belief.

posterior ∝ prior× likelihood

I Bayes rule is a rational means of updating our current belief (prior)
by means of observed data (likelihood).

I “Today’s posterior is tomorrow’s prior” – Lindley (1970)
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Bayes rule – Summary

posterior ∝ prior× likelihood

Bayesian modelling requires three ingredients:

I Data.
I Priors, reflecting our subjective belief about the parameters.
I A statistical model, relating parameters to data.

Bayes rule is a mathematically rigorous means to combine prior
information on parameters with the data, using the statistical model as
the bridge between both.
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Bayes rule – Example

Data here:
https://dasl.datadescription.com/datafile/bodyfat/.

I Various measurements of 250 men.
I To keep it simple: I dichotomize the percentage of body fat (PBF).
I 0 = PBF lower than 25%;

1 = PBF larger than 25%.
I Goal: Infer the proportion of obese men in the population.

Let’s denote the population proportion by θ.
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https://dasl.datadescription.com/datafile/bodyfat/


Bayes rule – Example
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Bayes rule – Example

Let’s use the Bayesian machinery.

Recall that we need three ingredients:

I Data.
I Prior.
I Model.
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Bayes rule – Example

Data. For now, let’s only use the first 10 scores.

I Sample size: 10
I Number of men with PBF > 25%: 2
I Sample proportion: θ̂ = 2

10 = .20

0 0 1 0 1 0 0 0 0 0
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Bayes rule – Example

Model. We’ll use the binomial model. Assumptions:

I Independence between measurements.
I One population with underlying rate θ.
I Random sample.
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Bayes rule – Example

Prior. We’ll try several.
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Bayes rule – Example

What happens if the prior is ‘uninformative’?
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Bayes rule – Example
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Bayes rule – Example
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Bayes rule – Example

What happens if the prior is ‘very informative’?

19 / 54



Bayes rule – Example
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Bayes rule – Example

What happens if neither the prior nor the likelihood dominates?
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Bayes rule – Example
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Bayes rule – Example
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Bayes rule – Example

Let’s now use all the data.

I Sample size: 250
I Number of men with PBF > 25%: 64
I Sample proportion: θ̂ = 64

250 = .256

How does Bayes updating look like now, when the data dominate?
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Bayes rule – Example
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Bayes rule – Example
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Bayes rule – Example
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Bayes rule – Example
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Bayes rule – Some conclusions

I Bayes rule highlights the parameter values that make the
observed data look more plausible.

I The posterior distribution is a compromise between the
information in the prior and the information in the data.
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Bayes rule – Some conclusions

How do priors typically affect posterior distributions?

I For ‘uninformative’ priors, posterior ≈ likelihood.
I For ‘very informative’ priors, posterior ≈ prior.
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Bayes rule – Some conclusions

How do data typically affect posterior distributions?

I For small sample sizes, posterior ≈ prior.
I For large sample sizes, posterior ≈ likelihood.
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Bayesian inference – Some criticism

I think I can hear some of you thinking right now. . .

“Hey, but there are sooo many posterior distributions!”
“This seems all sooo subjective!”
“I sooo don’t like it!”
:-(

Fair points.

Let me offer several counter-arguments.
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Bayesian inference – Counterarguments to criticism

1. Posterior distributions are fairly stable across a wide range of
reasonable priors, for large data sets.

More data⇒more information⇒more certainty.
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Bayesian inference – Counterarguments to criticism
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Bayesian inference – Counterarguments to criticism

2. Illusion of certainty: Pretending that results tell us more than is
actually possible.
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Bayesian inference – Counterarguments to criticism

There is subjectivity in each step of the scientific way:

I Selection of participants.
I Number of assessments.
I Variables to measure.
I Variables to control.
I Variability across researchers / labs.
I Statistical model to use.
I Variables to (not) include in the model.
I . . .

Then, try topping it up with few and noisy data. . .

It is fair, logical, necessary, that statistical inference reflects uncertainty.

Do embrace uncertainty!
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Bayesian inference – Counterarguments to criticism
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Bayesian inference – Counterarguments to criticism

3. Priors allow incorporating useful information.

I What is known about the parameter?

Let’s not pretend we do not know anything.
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Bayesian inference – Counterarguments to criticism
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Bayesian inference – Counterarguments to criticism

About PBF:

I It is actually known that the proportion of obese men in (some. . . )
population is about 40%.

I We can (we should!) take this into account.
I And that is what the prior is for.

(Do you know how much variability to expect?
Then include this in the prior too!!)

One of Bayes’ advantages: Accummulation of evidence.
Use it!
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https://en.wikipedia.org/wiki/Obesity_in_the_United_States


Bayesian inference – Counterarguments to criticism
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Bayesian inference – Counterarguments to criticism

Of course, strange things can occur.

“A Bayesian is one who, vaguely expecting a horse, and catch-
ing a glimpse of a donkey, strongly believes he has seen a mule.”
(Stephen Senn)

(Inspired by Aki Vehtari and John Kruschke.)
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https://twitter.com/avehtari/status/1218896617346162688
http://doingbayesiandataanalysis.blogspot.com/2011/07/horses-donkies-and-mules.html


Bayesian inference – Counterarguments to criticism
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Bayesian inference – Summarize results

The posterior distribution is the Holy Grail in Bayesian statistics.

It reflects our current knowledge of the world, conditional on:

I The chosen model.
I The chosen prior(s).
I The observed data.

How can we summarize the information in the posterior distribution?

44 / 54



Bayesian inference – Summarize results
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Bayesian inference – Summarize results

Point estimates.
Commonly used:

I posterior mean
I posterior mode
I posterior median.

For the PBF data based on 250 scores:

post. mean ≈ post. mode ≈ post. median ≈ .26.

(Recall: θ̂ = .256.)
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Bayesian inference – Summarize results
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Bayesian inference – Summarize results

Interval estimates.
I will focus on the 95% credible interval throughout.

There are some variants (do not overly worry about these nuances):

I Central 95% credible interval.
With 2.5% probability out on each tail.

I 95% HDI (highest density interval).
The shortest interval covering area .95.

For the PBF data they practically coincide.
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Bayesian inference – Summarize results
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Bayesian inference – Summarize results
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Bayesian inference – Summarize results

The posterior distribution allows computing probabilities for any
events involving parameters.

For instance:

I What is the (posterior) probability that the population proportion
of obese men is larger than 30%?

I What is the (posterior) probability that the population proportion
of obese men is between 20% and 30%?
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Bayesian inference – Summarize results

52 / 54



Bayesian inference – Summarize results
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Next

Specific examples will be dealt with in Part 2.

More concepts will be introduced as we proceed.

Now where’s that cup of coffee?
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