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I will present results from three papers, all revolving around the Bayes factor:

• Tendeiro, J. N., & Kiers, H. A. L. (2019). A review of issues about null hypothesis
Bayesian testing. Psychological Methods.
https://doi.org/10.1037/met0000221.
Preprint here: https://osf.io/t5xfd.

• Kiers, H. A. L. & Tendeiro, J. N. (2019). With Bayesian estimation one can get all
that Bayes factors offer, and more. Submitted.
Preprint here: https://psyarxiv.com/zbpmy

• Tendeiro, J. N., Kiers, H. A. L., & van Ravenzwaaij, D. (2019).
Tentative title: A mathematical proof for optional stopping using NHBT.
Close to submit (no preprint yet!).

https://doi.org/10.1037/met0000221
https://osf.io/t5xfd
https://psyarxiv.com/zbpmy
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“The field of psychology is experiencing a crisis of confidence, as many researchers
believe published results are not as well supported as claimed.”1

Q: Why?

A: Among several other reasons (QRPs2,3), due to overreliance on NHST and
p-values.4,5,6,7

1Rouder (2014).
2John, Loewenstein, and Prelec (2012).
3Simmons, Nelson, and Simonsohn (2011).

4Edwards, Lindman, and Savage (1963).
5Cohen (1994).
6Nickerson (2000).

7Wagenmakers (2007).
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Bayes factors are being increasingly advocated as a better alternative to NHST.1,2,3,4,5

We felt we did not know enough about Bayes factors (peculiarities, pitfalls,
problems).

We surveyed the literature. Here we summarize what we found.

1Jeffreys (1961).
2Wagenmakers et al. (2010).

3Vampaemel (2010).
4Masson (2011).

5Dienes (2014).
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The Bayes factor1,2 quantifies the change in prior odds to posterior odds due to the
data observed.

• Two models to compare, for instanceM0 : θ = 0 vsM1 : θ ̸= 0.
• Data D.

By Bayes’ rule (i = 0, 1):

p(Mi|D) =
p(Mi)p(D|Mi)

p(M0)p(D|M0) + p(M1)p(D|M1)
.

Then
p(M0|D)

p(M1|D)︸ ︷︷ ︸
posterior odds

=
p(M0)

p(M1)︸ ︷︷ ︸
prior odds

×
p(D|M0)

p(D|M1)︸ ︷︷ ︸
Bayes factor, BF01

.

1Jeffreys (1939). 2Kass and Raftery (1995).
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• Typical interpretation, e.g., BF01 = 5:
The data are five times more likely to have occurred underM0 than under
M1.

or, alternatively,
For any given prior odds, the posterior odds are five time more in favor ofM0.

• BF01 ∈ [0,∞):
• BF01 < 1 −→ Support for M1 over M0 .
• BF01 = 1 −→ Equal support for either model.
• BF01 > 1 −→ Support for M0 over M1 .

Bayes factor have been praised in many instances.1,2,3,4,5

Here we take a critical look at Bayes factors.

1Dienes (2011).
2Dienes (2014).

3Masson (2011).
4Vampaemel (2010).

5Wagenmakers et al. (2018).
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1. Bayes factors can be hard to compute. →

2. Bayes factors are sensitive to within-model priors. →

3. Use of ‘default’ Bayes factors. →

4. Bayes factors are not posterior model probabilities. →

5. Bayes factors do not imply a model is probably correct. →

6. Qualitative interpretation of Bayes factors. →

7. Bayes factors test model classes. →

8. Bayes factors←→ parameter estimation. →

9. Bayes factors favor pointM0. →

10. Bayes factors favorMa. →

11. Bayes factors often agree with p-values. →

I will focus on some of the issues, for time purposes.
The remaining are left as extra slides at the end (but we can discuss them too!!).
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• Very well known.1,2,3,4,5

• Due to fact that the likelihood function is averaged over the prior to compute the
marginal likelihood under a model:

P (D|Mi) =

∫
Θi

p(D|θ,Mi)p(θ|Mi)dθ.

Example: Bias of a coin6

• M0 : θ = .5 vs M1 : θ ̸= .5
• Data: 60 successes in 100 throws.
• Four within-model priors; all Beta(a, b).

Prior BF10 Lee & Wagenmakers (2014)
Approx. to Haldane’s prior (a = .05, b = .05) 0.09 ‘Strong’ evidence for M0
Jeffreys’ prior (a = .5, b = .5) 0.60 ‘Anecdotal’ evidence for M0
Uniform prior (a = 1, b = 1) 0.91 ‘Anecdotal’ evidence for M0
An informative prior (a = 3, b = 2) 1.55 ‘Anecdotal’ evidence for M1

1Kass (1993).
2Gallistel (2009).

3Vampaemel (2010).
4Robert (2016).

5Withers (2002).
6Liu and Aitkin (2008).
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• Arbitrarily vague priors are not allowed because the null model would be
invariably supported. So, in the Bayes Factor context, vague priors will
predetermine the test result!1

• However, counterintuitively, improper priors might work.2

• The problem cannot be solved by increasing sample size.3,4,5

This behavior of Bayes factors is in sharp contrast with estimation of posterior
distributions.6,7

1Morey and Rouder (2011).
2Berger and Pericchi (2001).
3Bayarri et al. (2012).

4Berger and Pericchi (2001).
5Kass and Raftery (1995).
6Gelman, Meng, and Stern (1996).

7Kass (1993).
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Figure 1: Data: 60 successes in 100 throws.
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How to best choose priors then?

• Some defend informative priors should be part of model setup and evaluation.1

• Other suggest using default/ reference/ objective, well chosen, priors.2,3,4,5

• Perform sensitivity analysis.

1Vampaemel (2010).
2Bayarri et al. (2012).

3Jeffreys (1961).
4Marden (2000).

5Rouder et al. (2009).
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Say that BF01 = 32; what does this mean?
After looking at the data, we revise our belief towardsM0 by 32 times.

Q: What does this imply concerning the probability of each model, given the observed
data?
A: On its own, nothing at all!

Bayes factors are the multiplicative factor converting prior odds to posterior odds.
They say nothing directly about model probabilities.

p(M0)

p(M1)︸ ︷︷ ︸
prior odds

×
p(D|M0)

p(D|M1)︸ ︷︷ ︸
Bayes factor

=
p(M0|D)

p(M1|D)︸ ︷︷ ︸
posterior odds
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• Bayes factors say nothing about the plausability of each model in light of the
data, that is, of p(Mi|D).

• Thus, Bayes factors = rate of change of belief, not belief itself.1

• To compute p(Mi|D), prior model probabilities are needed:

p(M0|D) =
Prior odds×BF01

1+ Prior odds×BF01
, p(M1|D) = 1− p(M0|D).

Example
• Anna: Equal prior belief for either model.
• Ben: Strong prior belief forM1.
• BF01 = 32: Applies to Anna and Ben equally.

p(M0) p(M1) BF01 p(M0|D) p(M1|D) Conclusion
Anna .50 .50 32 .970 .030 Favors M0
Ben .01 .99 .244 .756 Favors M1

1Edwards, Lindman, and Savage (1963).
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• A large Bayes factor, say, BF10 = 100, may mislead one to belief thatM1 is true
or at least more useful.

• Bayes factors are only a measure of relative plausibility among two competing
models.

• M1 might actually be a dreadful model (e.g., lead to horribly wrong predictions),
but simply less dreadful than its alternativeM0.1

• Bayes factors provide no absolute evidence supporting either model under
comparison.2

• Little is known as to how Bayes factors behave under model misspecification
(but see3).

In general, I suggest:

• Avoid thinking about truth / falsehood.
• Instead, think about evidence in favor / against of a model.
• Bayes factors can indeed assist with this.

1Rouder (2014). 2Gelman and Rubin (1995). 3Ly, Verhagen, and Wagenmakers (2016).
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• Frequentist two-sided significance tests and confidence intervals (CIs) are
directly related:
The null hypothesis is rejected iff the null point is outside the CI.

• This is not valid in the Bayesian framework.1

Figure 2: Data: Yi ∼ N(µ, σ2 = 1). M0 : µ = 0 vs M1 : µ ∼ N(0, σ2
1 = 1).

1Kruschke and Liddell (2018b).
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• There are many ‘credible intervals’, thus perhaps not surprising.
• Estimation and testing seem apart in the Bayesian world. Some argue they
address different research questions1,2,3,4 , but not everyone agrees.5,6

In particular, myself and Henk Kiers have recently argued that a unified Bayesian
framework for testing and estimation is possible (Part 2 of today’s talk).

1Kruschke (2011).
2Ly, Verhagen, and Wagenmakers (2016).

3Wagenmakers et al. (2018).
4Kruschke and Liddell (2018a).

5Robert (2016).
6Bernardo (2012).
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• NHST is strongly biased against the point null modelM0.1,2,3,4

• In other words, p(M0|D) and p-values do not agree.
(Yes, they are conceptually different!5)

• The discrepancy worsens as the sample size increases.

Figure 3: Data: Yi ∼ N(µ, σ2 = 1). M0 : µ = 0 vs M1 : µ ∼ N(0, σ2
1 = 1).

1Edwards, Lindman, and Savage (1963).
2Dickey (1977).

3Berger and Sellke (1987).
4Sellke, Bayarri, and Berger (2001).

5Gigerenzer (2018).
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• In this example, for n > 42 one rejectsM0 under NHST whereas BF10 < 1
(indicating support forM0).

• In sum: Bigger ESs are needed for Bayes factor to sway towardsM1.
But, how much bigger?

Figure 4: ESs required by BF10 , based of Jeffreys (1961) taxonomy.

Calibrate Bayes factors←→ p-values?1,2

1Wetzels et al. (2011). 2Jeon and De Boeck (2017).
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• Surprisingly, the previous result does not hold for one-sidedM0 (e.g., comparing
µ > 0 and µ < 0).1,2

• In this case, p(M0|D) and p-values can be very close under a wide range of
priors.

Figure 5: Data: Yi ∼ N(µ, σ2 = 1). M2 : µ ∼ N+(0, σ2
1 = 1) vs M3 : µ ∼ N−(0, σ2

1 = 1).

1Pratt (1965). 2Casella and Berger (1987).
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Tuning just-significant ESs with Bayes factors:

Figure 6: ESs required by BF10 , based of Jeffreys (1961) taxonomy.
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• p(M0|D) can be equal or even smaller than the p-value.1

• ‘p-values overstate evidence againstM0’ −→ Not always.2

Who to blame for this state of affairs?

We suggest the nature of the point null hypothesis; we are not alone.3,4
But others have argued in favor point of null hypotheses.5,6,7,8,9,10

‘True’ point hypotheses, really?!11,12,13

1Casella and Berger (1987).
2Jeffreys (1961).
3Casella and Berger (1987).
4Vardeman (1987).
5Berger and Delampady (1987).

6Kass and Raftery (1995).
7Gallistel (2009).
8Konijn et al. (2015).
9Marden (2000).
10Morey and Rouder (2011).

11Berger and Delampady (1987).
12Cohen (1994).
13Morey and Rouder (2011).
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• UnlessM0 is exactly true, n→∞ =⇒ BF01 → 0.
• Thus, both BF01 and the p-value approach 0 as n increases.
• It has be argued that this is a good property of Bayes factors (they are
information consistent).1

• However, BF01 does ignore ‘practical significance’, or magnitude of ESs.2

• Meehl’s paradox: For true negligible non-zero ESs, data accumulation should
make it easier to reject a theory, not confirm it.3,4

1Ly, Verhagen, and Wagenmakers (2016).
2Morey and Rouder (2011).

3Meehl (1967).
4Kruschke and Liddell (2018b).
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Figure 7: Data: Yi ∼ N(µ, σ2 = 1). M0 : µ = 0 vs M1 : µ ∼ N(0, σ2
1 = 1).
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• ConsiderM0 : θ = θ0 vsM0 : θ ̸= θ0.
• As n→∞, Bayes factors accumulate evidence in favor of trueM1 much faster
than they accumulate evidence in favor of trueM0.

• I.e., although Bayes factors allow drawing support for either model, they do so
asymmetrically.1

1Johnson and Rossell (2010).
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Figure 8: Data: Yi ∼ N(µ, σ2 = 1). M0 : µ = 0 vs M1 : µ ∼ N(0, σ2
1 = 1).
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• It is increasingly difficult to ignore the current crisis of confidence in
psychological research.

• Several key papers and reports made the ongoing state of affairs
unbearable.1,2,3,4,5,6

• Some attempts to mitigate the problem have been put forward, including
pre-registration and recalibration.7,8

• Some have suggested that a shift towards Bayesian testing is welcome.9,10,11

Would Bayes factors contribute to improving things?

1Ioannidis (2005).
2Simmons, Nelson, and Simonsohn (2011).
3Bem (2011).
4Wicherts, Bakker, and Molenaar (2011).

5John, Loewenstein, and Prelec (2012).
6Open Science Collaboration (2015).
7Benjamin et al. (2018).
8Lakens et al. (2018).

9Vampaemel (2010).
10Konijn et al. (2015).
11Dienes (2016).
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What Bayes factors promise to offer might not be what researchers and journals are
willing to use.1

• It has not yet been shown that the Bayes factors’ ability to draw support forM0
will alleviate the bias against publishing null results (“lack of effects” are still too
unpopular).
Bayes factors need not be aligned with current publication guidelines.

• ‘B-hacking’2 is still entirely possible. New QRPs lurking around the corner?

1Savalei and Dunn (2015). 2Konijn et al. (2015).
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We think that:

• The use, abuse, and misuse of NHST and p-values is problematic. The statistical
community is aware of this.1

• Bayes factors are an interesting alternative, but they do have limitations of their
own.

• In particular, Bayes factors are also based on ‘dichotomous modeling thinking’:
Given two models, which one is to be preferred?
We favor a more holistic approach to model comparison.

• Bayes factors provide no direct information concerning effect sizes, their
magnitude, and uncertainty.2,3 This is sorely missed by this approach.

1Wasserstein and Lazar (2016). 2Wilkinson (1999). 3Kruschke and Liddell (2018a).



DISCUSSION 28 / 52

What to do?

• Truly consider whether testing is what you need.
• In particular, point hypotheses seem prone to trouble.
How realistic are these hypotheses?

• Do estimation!1,2,3
Perform inference based on the entire posterior distribution. Report credible
values. Compute posterior probabilities.

1Cohen (1994). 2Kruschke (2011). 3van der Linden and Chryst (2017).
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Paper currently under revision.
Preprint here: https://psyarxiv.com/zbpmy/.

https://psyarxiv.com/zbpmy/
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• A link between NHBT and Bayesian estimation has been recently reiterated.1

• It requires the so-called spike-and-slab prior2 :
• A point mass probability on the null point.
• A probability density function everywhere else.

Figure 9: From Rouder et al. (2018). M0 : δ = 0 vs M1 : δ ∼ N(0, σ2
0). δ = µ

σ = std. ES.

1Rouder, Haaf, and Vandekerckhove (2018). 2Mitchell and Beauchamp (1988).
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• We derived the closed-form expression of the posterior distribution based on
the spike-and-slab prior.

• We show that the spike-and-slab prior can be approximated by a pure
probability density function which we called the hill-and-chimney prior.

• We derived the closed-form expression of the posterior distribution based on
the hill-and-chimney prior.

• We established that the hill-and-chimney prior converges to the spike-and-slab
prior as the chimney’s width converges to 0.

• The hill-and-chimney prior is not continuous. We offer an accurate
approximation that is continuous, by means of mollification.1

• Importantly, Bayes factor values can be closely approximated by means of these
posterior distributions based on (approx.) hill-and-chimney priors.

• Hence,
With Bayesian estimation one can get all that Bayes factors offer, and more.

1Friedrichs (1944).
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Figure 10: Spike-and-slab prior (A), hill-and-chimney prior (B–F).



BAYESIAN ESTIMATION AND BAYES FACTORS 33 / 52

Figure 11: Approximating the hill-and-chimney prior by mollification (n = 40, δ = .15, σ = 1,
σ0 = 1, ε = .1).
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But ‘what more’ can Bayesian estimation offer?
−→ Probabilities under the posterior distribution!
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• 4.13 = BF01 ≃ posterior odds ratio =
P (δ∈[−ε,ε]|y)
P (δ ̸∈[−ε,ε]|y) = 3.81.

• P (δ > 0|y) = .70.
• P (δ > 0.1|y) = .18.
• P (δ > 0.3|y) = .04.



PART 2 – WITH BAYESIAN ESTIMATION
ONE CAN GET ALL THAT BAYES FACTORS
OFFER, AND MORE
DISCUSSION



DISCUSSION 36 / 52

• We fully integrated Bayesian testing and estimation for one simple model setting.

• The Bayes factor is only one of many possible probability statements under the
posterior.
So, estimation is much richer than testing.

• Spike-and-slab priors are difficult to justify.
Hill-and-chimney priors are much more reasonable.

• Smooth continuous approximations to the hill-and-chimney prior work well.
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Paper almost ready to submit.
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We focus on the optional stopping, or sequential testing, procedure to test between
two modelsM0 : µ = µ0 andM1 (e.g., µ = µ1 or µ ̸= µ0):

1. Collect some data.

2. Perform the test.
2a. Using NHST (choose α and nmax in advance):

Compute p and…
• …if p < α: STOP and retain M1 .
• …if p > α: Back to 1.

Continue until either conclusive evidence or nmax is reached.

2b. Using NHBT (choose BFL , BFU , and nmax in advance):
Compute BF10 and…

• …if BF10 < BFL : Stop and retain M0 .
• …if BF10 > BFU : Stop and retain M1 .
• …if BFL < BF10 < BFU : Back to 1.

Continue until either conclusive evidence or nmax is reached.
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Optional stopping is a real problem under NHST.1,2

−→ False positive rate≫ α.

Figure 12: Proportion of false positives as a function of sample size under the frequentist optional
stopping procedure, for a one-sample t-test.

1Armitage, McPherson, and Rowe (1969). 2Jennison and Turnbull (1990).
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What about using NHBT?

It has been argued through the years that optional stopping under the Bayesian
paradigm is allowed.1,2,3,4,5

However, two recent papers disputed this state of affairs.6,7

Rouder offered a rebuttal to these papers in 2014.
(Title: ‘Optional stopping: No problem for Bayesians’).8

1Edwards, Lindman, and Savage (1963).
2Kass and Raftery (1995).
3Wagenmakers (2007).

4Wagenmakers et al. (2010).
5Francis (2012).
6Yu et al. (2014).

7Sanborn and Hills (2014).
8Rouder (2014).
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Rouder claimed that Bayes factors are well calibrated under optional stopping.

The argument goes as follows:

• Assume prior odds equal to 1.
• This implies that

p(D|M1)

p(D|M0)︸ ︷︷ ︸
Bayes factor, BF10

=
p(M1|D)

p(M0|D)︸ ︷︷ ︸
posterior odds

.

• By definition of posterior odds, for any given value BF10,
M1 is BF10 times more likely thanM0 after considering the data.

• Rouder made two assertions:
1. For any given value BF10 ,

M1 is BF10 times more likely than M0 to have generated BF10 .

2. The above statement also holds under optional stopping.
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Rouder used simulations only to make his point, for two tests on the mean µ of a
normal distribution with know variance σ2:

• M0 : µ = 0 versusM1 : µ = µ1.
• M0 : µ = 0 versusM1 : µ ∼ N (0, σ2

1 ) with σ2
1 known.

In our paper, we offer mathematical derivations to both of Rouder’s assertions, for
both tests above:

• We fully proved assertion 1 for both tests, for a fixed sample size n.
• We provide a proof of assertion 2 for a particular situation:
After exactly one step of the optional stopping procedure.
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Our trick:
We computed the sampling distribution of (the log of the) BF10 underM0
andM1, and showed that their ratio equals the BF10 itself.

Example:M0 : µ = 0 versusM1 : µ = µ1, with σ2 known.

Bayes factor formula:

BF10 = exp

[
nµ1(2X − µ1)

2σ2

]
.

We worked with logarithms:

ln(BF10) =
nµ1(2X − µ1)

2σ2 .
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Figure 13: After n = 10 observations, with σ = .3 and µ1 = .1.
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We offer a mathematical proof to a Bayes factor property suggested by Rouder (2014).

Is this conclusive evidence that Bayesian optional stopping is allowed?
Well, not just yet.1

However, in a very recent reply, Rouder again disagrees…
https://psyarxiv.com/m6dhw/

To be continued…

1Heide and Grünwald (2017).

https://psyarxiv.com/m6dhw/
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I have spent some time learning about Bayes factors.

What do I now think of them?

I think that:

• Model comparison (including hypothesis testing) has a time and place in
Psychology.

• However, and clearly, people test way too much.
• Model comparison says very little (nothing?) about how well a model fits to data.
• Testing need not be a prerequisite for estimation, unlike what some advocate.1

• Estimation quantifies uncertainty in ways that Bayes factors simply can not.
• Estimate ESs (direction, magnitude). Bayes factors ignore this!
• Avoid the dichotomous reasoning subjacent to Bayes factors.
• Bayes factors can be very useful (I use them!), but they should not always be the
end of our inference.

1Wagenmakers et al. (2018).
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BF01 =
P (D|M0)

P (D|M1)
.

Bayes factors are ratios of marginal likelihoods:

P (D|Mi) =

∫
Θi

p(D|θ,Mi)p(θ|Mi)dθ

• The marginal likelihoods, P (D|Mi), are hard to compute in general.
• Resort to (not straightforward) numerical procedures1,2

• Alternatively, use software with prepackaged default priors and data models3,4
(limited to specific models).

But: See bridge sampling by Quentin Gronau.

1Chen, Shao, and Ibrahim (2000).
2Gamerman and Lopes (2006).

3JASP Team (2018).
4Morey and Rouder (2018).

https://github.com/quentingronau/bridgesampling
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• Priors matter a lot for Bayes factors.
• ‘Objective’ bayesians advocate using predefined priors for testing.1,2,3

• Albeit convenient, default priors lack empirical justification.4

• ‘Objective priors’ were derived under strong requirements5,6 , which impose
strong restrictions on the priors (“appearance of objectivity”7).

• Defaults are only useful to the extent that they adequately translate one’s
beliefs.8,9

• Some default priors, like the now famous JZS prior10,11,12 , still require a
specification of a scale parameter. Its default value has also changed over
time.13,14

1Jeffreys (1961).
2Berger and Pericchi (2001).
3Rouder et al. (2009).
4Robert (2016).
5Bayarri et al. (2012).

6Berger and Pericchi (2001).
7Berger and Pericchi (ibid.).
8Kruschke (2011).
9Kruschke and Liddell (2018a).
10Jeffreys (1961).

11Zellner and Siow (1980).
12Rouder et al. (2009).
13Rouder et al. (ibid.).
14Morey and Rouder (2018).
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• Bayes factors are a continuous measure of evidence in [0,∞):
• BF01 > 1: Data are more likely under M0 than under M1 .
The larger BF01 , the stronger the evidence for M0 over M1 .

• BF01 < 1: Data are more likely under M1 than under M0 .
The smaller BF01 , the stronger the evidence for M1 over M0 .

• But, how ‘much more’ likely?
• Answer is not unique: Qualitative interpretations of strength are subjective (what
is weak?, moderate?, strong?).1,2,3,4

This is not a problem of Bayes factor per se, but of practitioners requiring qualitative
labels for test results.

1Jeffreys (1961).
2Kass and Raftery (1995).

3Lee and Wagenmakers (2013).
4Dienes (2016).
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Consider testingM0 : θ = θ0 vsM1 : θ ̸= θ0. Then

B01 =
p(D|M0)

p(D|M1)
, with p(D|M1) =

∫
p(D|θ,M1)p(θ|M1)dθ.

• p(D|M1) is a weighted likelihood for a model class:
Each parameter value θ defines one particular model in the class.

• Bayes factors as ratios of likelihoods of model classes.1

• E.g., BF01 = 1/5: The data are five times more likely under the model class under
M1, averaged over its prior distribution, than underM0.

• Catch: The most likely model class need not include the true model that
generated the data.
I.e., the Bayes factor may fail to indicate the class that includes the
data-generating model (in case it exists, of course).2

1Liu and Aitkin (2008). 2Liu and Aitkin (ibid.).
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p-values are often accused of being ‘violently biased against the null hypothesis’.1,2

But this is not always true.3

Trafimow’s argument:
Consider p(D|M1), i.e., the likelihood of the observed data under the alternative
model.

p(M0|D) =
p(M0)p(D|M0)

p(M0)p(D|M0) + [1− p(M0)]p(D|M1)

Suppose p is small (say, < .05).

• If p(D|M1) is very small then p(M0|D) is close to 1 for p(D|M0) fixed.
Disagreement with p.

• But, if p(D|M1) is large then p(M0|D) is small.
Agreement with p.

1Edwards (1965). 2Wagenmakers et al. (2018). 3Trafimow (2003).
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Conclusion:
When data are more likely underM1 than underM0, Bayes factors and p-values
tend to agree with each other.

The p-value, by definition, is oblivious to the likelihood of the data underM1.

This is why the p-value is sometimes biased againstM0.

NHBT allows drawing support forM0, unlike NHST.

So, large p-values cannot be used as evidence in favor ofM0, but large BF01 values
can.
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