ELABORATING ON ISSUES WITH BAYES FACTORS

Jorge N. Tendeiro Henk A. L. Kiers July 10, 2018

University of Groningen

MOTIVATION

"The field of psychology is experiencing a crisis of confidence, as many researchers believe published results are not as well supported as claimed."¹

Q: Why?

A: Among several other reasons (QRPs^{2,3}), due to overreliance on NHST and p values.^{4,5,6,7}

¹Rouder (2014).
 ²John, Loewenstein, and Prelec (2012).
 ³Simmons, Nelson, and Simonsohn (2011).

⁴Edwards, Lindman, and Savage (1963). ⁵Cohen (1994). ⁶Nickerson (2000). ⁷Wagenmakers (2007).

Bayes factors are being increasingly advocated as a better alternative to NHST.^{1,2,3,4,5}

We felt we did not know enough about Bayes factors (peculiarities, pitfalls, problems).

We surveyed the literature. Here we summarize what we found.

¹ Jeffreys (1961).	
² Wagenmakers et al. (2010).	

³Vampaemel (2010). ⁴Masson (2011). ⁵Dienes (2014).

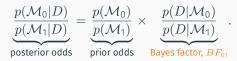
BAYES FACTORS: AN X-RAY

The Bayes factor^{1,2} quantifies the change in prior odds to posterior odds due to the data observed.

- Two models to compare, for instance $\mathcal{M}_0: \theta = 0$ vs $\mathcal{M}_1: \theta \neq 0$.
- Data D.
- By Bayes' rule (i = 0, 1):

$$p(\mathcal{M}_i|D) = \frac{p(\mathcal{M}_i)p(D|\mathcal{M}_i)}{p(\mathcal{M}_0)p(D|\mathcal{M}_0) + p(\mathcal{M}_1)p(D|\mathcal{M}_1)}$$

Then



²Kass and Raftery (1995).

• Typical interpretation, e.g., $BF_{01} = 5$:

The data are five times more likely to have occurred under \mathcal{M}_0 than under \mathcal{M}_1 .

- $BF_{01} \in [0,\infty)$:
 - $BF_{01} < 1 \longrightarrow \text{Support for } \mathcal{M}_1 \text{ over } \mathcal{M}_0.$
 - $BF_{01} = 1 \longrightarrow$ Equal support for either model.
 - $BF_{01} > 1 \longrightarrow \text{Support for } \mathcal{M}_0 \text{ over } \mathcal{M}_1.$

Bayes factor have been praised in many instances.^{1,2,3,4,5}

Here we take a critical look at Bayes factors.

¹ Dienes (2011).	
² Dienes (2014).	

³Masson (2011). ⁴Vampaemel (2010). ⁵Wagenmakers et al. (2018).

- 1. Bayes factors are hard to compute. 👄
- 2. Bayes factors are sensitive to priors. 👄
- 3. Bayes factors are not posterior model probabilities. 👄
- 4. Bayes factors do not imply a model is correct. 👄
- 5. Interpretation of Bayes factors can be ambiguous. 👄
- 6. Bayes factors test model *classes*. 👄
- 7. Bayes factors \longleftrightarrow parameter estimation. \bigcirc
- 8. 'Default' Bayes factors lack justification. 👄
- 9. Bayes factors favor point \mathcal{M}_0 . \bigcirc
- 10. Bayes factors don't favor one-sided \mathcal{M}_0 . igodot
- 11. Bayes factors favor \mathcal{M}_a .
- 12. Bayes factors favor \mathcal{M}_a , II. \bigcirc
- 13. Bayes factors may be problematic for nested models. 🕒
- 14. Bayes factors and the replication crisis. igodot

BAYES FACTORS ARE SENSITIVE TO PRIORS

- Very well known.^{1,2,3,4,5}
- Due to fact that the likelihood function is averaged over the prior to compute the marginal likelihood under a model.

Example: Bias of a coin⁶

- Three possible states: Two-headed, two-tailed, fair.
- $\bullet \ \mathcal{M}_0: \text{Two-headed} \quad \textit{vs} \quad \mathcal{M}_1: \text{Not two-headed}$
- Data: Four heads out of four tosses.

Prior	p(heads)			Intuition	BF_{01}	Lee & Wagenmakers (2014)	
PHOI	0	.5	1	Incultion	<i>DP</i> ₀₁	Lee & Wageriniakers (2014)	
A	.01	.98	.01	Coin is fair	16.2	'Strong' evidence for \mathcal{M}_0	
В	.33	.33	.33	Complete ignorance	32	'Very strong' evidence for \mathcal{M}_0	
С	.49	.02	.49	Coin is unfair, either way	408	'Extreme' evidence for \mathcal{M}_{0}	

The Bayes factors vary by as much as one order of magnitude.

¹Kass (1993). ²Gallistel (2009). ³Vampaemel (2010). ⁴Robert (2016). ⁵Withers (2002). ⁶Lavine and Schervish (1999).

- The previous example is by no means unique or restricted to discrete random variables.^{1,2}
- Varying priors may lead to results displaying support for different hypotheses.³
- Arbitrarily vague priors are not allowed because the null model would be invariably supported. So, in the Bayes Factor context, vague priors will predetermine the test result!⁴
- However, counterintuitively, improper priors might work.⁵
- The problem cannot be solved by increasing sample size.^{6,7,8}

This behavior of Bayes factors is in sharp contrast with estimation of posterior distributions.^{9,10}

¹Liu and Aitkin (2008). ²Berger and Pericchi (2001). ³Liu and Aitkin (2008). ⁴Morey and Rouder (2011). ⁵Berger and Pericchi (2001).
⁶Bayarri et al. (2012).
⁷Berger and Pericchi (2001).
⁸Kass and Raftery (1995).

⁹Gelman and Rubin (1995). ¹⁰Kass (1993). How to best choose priors then?

- Some defend informative priors should be part of model setup and evaluation.¹
- Other suggest using default/ reference/ objective, well chosen, priors.^{2,3,4,5}
- Perform sensitivity analysis.

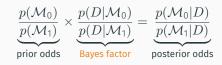
BAYES FACTORS ARE NOT POSTERIOR MODEL PROBABILITIES

Say that $BF_{01} = 32$; what does this mean?

After looking at the data, we revise our belief towards \mathcal{M}_0 by about 32 times.

Q: What does this imply concerning the probability of each model, given the observed data?A: On its own, nothing at all!

Bayes factors are the multiplicative factor converting prior odds to posterior odds. They say nothing directly about model probabilities.



- Bayes factors say nothing about the plausability of each model in light of the data, that is, of $p(\mathcal{M}_i|D)$.
- Thus, Bayes factors = rate of change of belief, not belief itself.¹
- To compute $p(\mathcal{M}_i|D)$, prior model probabilities are needed:

$$p(\mathcal{M}_0|D) = \frac{\text{Prior odds} \times BF_{01}}{1 + \text{Prior odds} \times BF_{01}}, \quad p(\mathcal{M}_1|D) = 1 - p(\mathcal{M}_0|D).$$

Example

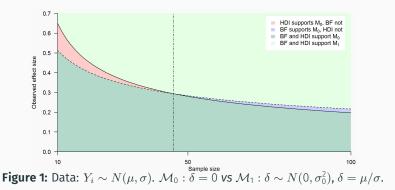
- Anna: Equal prior belief for either model.
- Ben: Strong prior belief for \mathcal{M}_1 .
- $BF_{01} = 32$: Applies to Anna and Ben equally.

	$p(\mathcal{M}_0)$	$p(\mathcal{M}_1)$	BF_{01}	$p(\mathcal{M}_0 D)$	$p(\mathcal{M}_1 D)$	Conclusion
Anna	.50	.50	32	.970	.030	Favors \mathcal{M}_0
Ben	.01	.99		.244	.756	Favors \mathcal{M}_1

¹Edwards, Lindman, and Savage (1963).

BAYES FACTORS \longleftrightarrow **PARAMETER ESTIMATION**

- Frequentist two-sided significance tests and confidence intervals (CIs) are directly related: The null hypothesis is rejected iff the null point is outside the CI.
- This is not valid in the Bayesian framework.¹



¹Kruschke and Liddell (2018b).

Bayes factors favor point \mathcal{M}_0

Bayes factors favor point \mathcal{M}_0

- NHST is strongly biased against the point null model \mathcal{M}_0 .^{1,2,3,4}
- In other words, p(M₀|D) and p values do not agree.
 (Yes, they are conceptually different!⁵)
- The discrepancy worsens as the sample size increases.

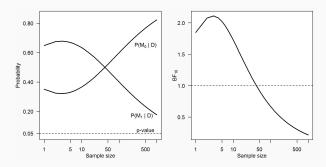


Figure 2: Data: $Y_i \sim N(\mu, 1)$. $M_0: \mu = 0$ vs $M_1: \mu \sim N(0, 1)$.

¹Edwards, Lindman, and Savage (1963). ²Dickey (1977). ³Berger and Sellke (1987).
 ⁴Sellke, Bayarri, and Berger (2001).

⁵Gigerenzer (2018).

- In this example, for n > 42 one rejects \mathcal{M}_0 under NHST whereas $BF_{10} < 1$ (indicating support for \mathcal{M}_0).
- In sum: Bigger ESs are needed for Bayes factor to sway towards *M*₁. But, how much bigger?

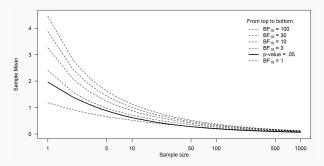


Figure 3: ESs required by BF₁₀, based of Jeffreys (1961) taxonomy.

Calibrate Bayes factors $\longleftrightarrow p$ values?^{1,2}

¹Wetzels et al. (2011).

²Jeon and De Boeck (2017).

Bayes factors don't favor one-sided \mathcal{M}_{0}

Bayes factors don't favor one-sided \mathcal{M}_0

- Surprisingly, the previous result does not hold for one-sided \mathcal{M}_0 (e.g., $\mathcal{M}_0:\mu<0).^{1,2}$
- In this case, $p(\mathcal{M}_0|D)$ and p values can be very close under a wide range of priors.

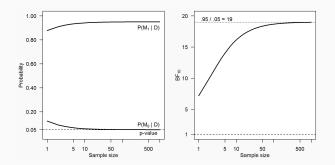


Figure 4: Data: $Y_i \sim N(\mu, 1)$. $M_0 : \mu \sim N^+(0, 1)$ vs $M_1 : \mu \sim N^-(0, 1)$.

²Casella and Berger (1987).

Tuning just-significant ESs with Bayes factors:

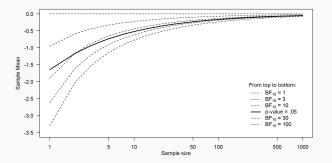


Figure 5: ESs required by *BF*₁₀, based of Jeffreys (1961) taxonomy.

- + $p(\mathcal{M}_0|D)$ can be equal or even smaller than the p value.¹
- 'p values overstate evidence against \mathcal{M}_0 ' \longrightarrow Not always.²

Who to blame for this state of affairs?

We suggest the nature of the point null hypothesis; we are not alone.^{3,4} But others have argued in favor point of null hypotheses.^{5,6,7,8,9,10}

'True' point hypotheses, really?!^{11,12,13}

¹Casella and Berger (1987). ²Jeffreys (1961). ³Casella and Berger (1987). ⁴Vardeman (1987). ⁵Berger and Delampady (1987). ⁶ Kass and Raftery (1995).
 ⁷ Gallistel (2009).
 ⁸ Konijn et al. (2015).
 ⁹ Marden (2000).
 ¹⁰ Morey and Rouder (2011).

¹¹Berger and Delampady (1987).
 ¹²Cohen (1994).
 ¹³Morey and Rouder (2011).

BAYES FACTORS FAVOR \mathcal{M}_a

- Unless \mathcal{M}_0 is exactly true, $n \to \infty \Longrightarrow BF_{01} \to 0$.
- Thus, both $BF_{\rm 01}$ and the p value approach 0 as n increases.
- It has be argued that this is a good property of Bayes factors (they are information consistent).¹
- However, BF_{01} does ignore 'practical significance', or magnitude of ESs.²
- Meehl's paradox: For true negligible non-zero ESs, data accumulation should make it easier to reject a theory, not confirm it.^{3,4}

¹Ly, Verhagen, and Wagenmakers (2016). ²Morey and Rouder (2011). ³Meehl (1967). ⁴Kruschke and Liddell (2018b).

BAYES FACTORS FAVOR \mathcal{M}_{a_1}

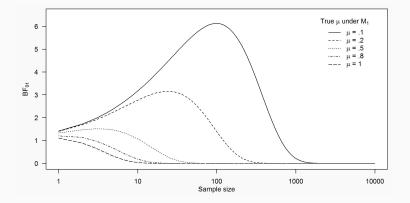


Figure 6: Data: $Y_i \sim N(\mu, 1)$. $\mathcal{M}_0: \mu = 0$ vs $\mathcal{M}_1: \mu \sim N(0, 1)$.

BAYES FACTORS FAVOR \mathcal{M}_a , II

- Consider $\mathcal{M}_0: \theta = \theta_0$ vs $\mathcal{M}_0: \theta \neq \theta_0$.
- As $n \to \infty$, Bayes factors accumulate evidence in favor of true \mathcal{M}_1 much faster than they accumulate evidence in favor of true \mathcal{M}_0 .
- I.e., although Bayes factors allow drawing support for either model, they do so asymmetrically.¹

BAYES FACTORS FAVOR \mathcal{M}_a , II

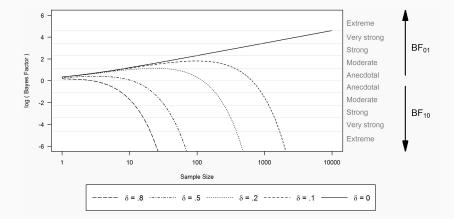


Figure 7: Data: $Y_i \sim N(\mu, \sigma)$. $\mathcal{M}_0 : \delta = 0$ vs $\mathcal{M}_1 : \delta \sim N(0, \sigma_0^2)$, $\delta = \mu/\sigma$.

BAYES FACTORS AND THE REPLICATION CRISIS

- It is increasingly difficult to ignore the current crisis of confidence in psychological research.
- Several key papers and reports made the ongoing state of affairs unbearable.^{1,2,3,4,5,6}
- Some attempts to mitigate the problem have been put forward, including pre-registration and recalibration.^{7,8}
- Some have suggested that a shift towards Bayesian testing is welcome.^{9,10,11}

Would Bayes factors contribute to improving things?

¹Ioannidis (2005).

² Simmons, Nelson, and Simonsohn (2011). ³ Bem (2011).

⁴Wicherts, Bakker, and Molenaar (2011).

⁵ John, Loewenstein, and Prelec (2012).
 ⁶ Open Science Collaboration (2015).
 ⁷ Benjamin et al. (2018).
 ⁸ Lakens et al. (2018).

⁹Vampaemel (2010). ¹⁰Konijn et al. (2015). ¹¹Dienes (2016). What Bayes factors promise to offer might not be what researchers and journals are willing to use.¹

- It has not yet been shown that the Bayes factors' ability to draw support for M₀ will alleviate the bias against publishing null results ("lack of effects" are still too unpopular).
 Bayes factors need not be aligned with current publication guidelines.
- 'B-hacking'² is still entirely possible. New QRPs lurking around the corner?

Now what?

We think that:

- The use, abuse, and misuse of NHST and *p* values are problematic. The statistical community is aware of this.¹
- Bayes factors are an interesting alternative, but they do have limitations of their own.
- In particular, Bayes factors are also based on 'dichotomous modeling thinking': Given two models, which one is to be preferred?
 We favor a more holistic approach to model comparison.
- Bayes factors provide no direct information concerning effect sizes, their magnitude and uncertainty.^{2,3} This is sorely missed by this approach.

¹Wasserstein and Lazar (2016).

What to do?

- Truly consider whether testing is what you need.
- In particular, point hypotheses seem prone to trouble. How realistic are these hypotheses?
- Do estimation!^{1,2,3}

Perform inference based on the entire posterior distribution. Report credible values. Compute posterior probabilities. There are other tools, also based on the Bayesian paradigm, worth considering. These include:

- Bayes model averaging.¹
- Generalization criterion.²
- Deviance information criterion.³
- Mixture model estimation.4,5
- Posterior predictive loss.⁶
- Posterior likelihood ratio.⁷
- Posterior predictive methods.^{8,9,10}

¹Hoeting et al. (1999). ²Liu and Aitkin (2008). ³Spiegelhalter et al. (2002). ⁴Kamary et al. (2014). ⁵ Robert (2016).
 ⁶ Gelfand and Ghosh (1998).
 ⁷ Aitkin, Boys, and Chadwick (2005).
 ⁸ Vehtari and Lampinen (2002).

⁹Vehtari and Ojanen (2012). ¹⁰Gelman et al. (2013).

THANK YOU

j.n.tendeiro@rug.nl

BAYES FACTORS ARE HARD TO COMPUTE

$$BF_{01} = \frac{P(D|\mathcal{M}_0)}{P(D|\mathcal{M}_1)}.$$

Bayes factors are ratios of marginal likelihoods:

$$P(D|\mathcal{M}_i) = \int_{\Theta_i} p(D|\theta, \mathcal{M}_i) p(\theta|\mathcal{M}_i) d\theta$$

- The marginal likelihoods, $P(D|\mathcal{M}_i)$, are hard to compute in general.
- Resort to (not straightforward) numerical procedures^{1,2}
- Alternatively, use software with prepackaged default priors and data models^{3,4} (limited to specific models).

¹Chen, Shao, and Ibrahim (2000). ²Gamerman and Lopes (2006). ³JASP Team (2018). ⁴Morey and Rouder (2018).

BAYES FACTORS DO NOT IMPLY A MODEL IS CORRECT

- A large Bayes factor, say, $BF_{10} = 100$, may mislead one to belief that M_1 is true or at least more useful.
- Bayes factors are only a measure of relative plausibility among two competing models.
- \mathcal{M}_1 might actually be a dreadful model (e.g., lead to horribly wrong predictions), but simply less dreadful than its alternative \mathcal{M}_0 .¹
- Bayes factors provide no absolute evidence supporting either model under comparison.²
- Little is known as to how Bayes factors behave under model misspecification (but see³).

¹Rouder (2014).

²Gelman and Rubin (1995).

³Ly, Verhagen, and Wagenmakers (2016).

INTERPRETATION OF BAYES FACTORS CAN BE AMBIGUOUS

- Bayes factors are a continuous measure of evidence in $[0,\infty)$:
 - $BF_{01} > 1$: Data are more likely under \mathcal{M}_0 than under \mathcal{M}_1 . The larger BF_{01} , the stronger the evidence for \mathcal{M}_0 over \mathcal{M}_1 .
 - $BF_{01} < 1$: Data are more likely under \mathcal{M}_1 than under \mathcal{M}_0 . The smaller BF_{01} , the stronger the evidence for \mathcal{M}_1 over \mathcal{M}_0 .
- But, how 'much more' likely?
- Answer is not unique: Qualitative interpretations of strength are subjective (what is weak?, moderate?, strong?).^{1,2,3,4}

This is not a problem of Bayes factor per se, but of practitioners requiring qualitative labels for test results.

¹Jeffreys (1961). ²Kass and Raftery (1995). ³Lee and Wagenmakers (2013). ⁴Dienes (2016).

BAYES FACTORS TEST MODEL CLASSES

Consider testing $\mathcal{M}_0: \theta = \theta_0$ vs $\mathcal{M}_1: \theta \neq \theta_0$. Then

$$B_{01} = \frac{p(D|\mathcal{M}_0)}{p(D|\mathcal{M}_1)}, \quad \text{with} \quad p(D|\mathcal{M}_1) = \int p(D|\theta, \mathcal{M}_1) p(\theta|\mathcal{M}_1) d\theta.$$

- $p(D|\mathcal{M}_1)$ is a weighted likelihood for a model class: Each parameter value θ defines one particular model in the class.
- Bayes factors as ratios of likelihoods of model classes.¹
- E.g., $BF_{01} = 1/5$: The data are five times more likely under the model class under M_1 , averaged over its prior distribution, than under M_0 .
- Catch: The most likely model class need not include the true model that generated the data.

I.e., the Bayes factor may fail to indicate the class that includes the data-generating model (in case it exists, of course).²

'DEFAULT' BAYES FACTORS LACK JUSTIFICATION

'DEFAULT' BAYES FACTORS LACK JUSTIFICATION

- Priors matter a lot for Bayes factors.
- 'Objective' bayesians advocate using predefined priors for testing.^{1,2,3}
- Albeit convenient, default priors lack empirical justification.⁴
- 'Objective priors' were derived under strong requirements^{5,6}, which impose strong restrictions on the priors ("appearance of objectivity"⁷).
- Defaults are only useful to the extent that they adequately translate one's beliefs.^{8,9}
- Some default priors, like the now famous JZS prior^{10,11,12}, still require a specification of a scale parameter. Its default value has also changed over time.^{13,14}

¹Jeffreys (1961). ²Berger and Pericchi (2001). ³Rouder et al. (2009). ⁴Robert (2016). ⁵Bayarri et al. (2012). ⁶Berger and Pericchi (2001).
⁷Berger and Pericchi (ibid.).
⁸Kruschke (2011).
⁹Kruschke and Liddell (2018a).
¹⁰Jeffreys (1961).

¹¹Zellner and Siow (1980).
¹²Rouder et al. (2009).
¹³Rouder et al. (ibid.).
¹⁴Morey and Rouder (2018).

BAYES FACTORS MAY BE PROBLEMATIC FOR NESTED MODELS

• \mathcal{M}_0 is nested in \mathcal{M}_1 when \mathcal{M}_0 is a constrained form of \mathcal{M}_1 . Example:

$$\mathcal{M}_0: \theta = \theta_0 \quad \text{vs} \quad \mathcal{M}_1: \theta \neq \theta_0.$$

- Bayes factors were originally developed for nested models.¹
- To compute BF_{01} , all parameters other than θ must be integrated out from both models. These are referred to as common or nuisance parameters.
- Vague priors over 'common' parameters are suggested to work (!!).²
- Usual strategy used by default Bayes factors: Use the same prior for the 'common' parameters under both models.

¹Jeffreys (1939).

²Kass and Raftery (1995).

Problem

Distributional properties of the common parameters may change between models.^{1,2}

Example

SD of residuals in nested regression models.

These are, more appropriately, "approximately common parameters".³