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PCA

Two-way array = data matrix
Scores of subjects (rows) on variables (columns).

XI subjects

J variables

= A

B'

+ EAB'

scores
matrix

loadings
matrix

residuals
matrix

�� ��X = AB′ + E . . .
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PCA �� ��X = AB′ + E

Goal: Representation of variables in low-dimension space.�� ��# columns of A and B � # columns of X

X is approximated by a sum of R rank-1 matrices:�� ��X ' a1b′1 + · · ·+ aRb′R
. . .
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Three-way arrays

Generalize matrix structure to 3D.

Easy to generalize to n-way.
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Extending PCA to 3D

X: I × J × K array (I=subjects, J=variables, K=situations)
Number of components: R

Candecomp/Parafac

Xk = ACkB′ + Ek PCA . . . . . .

Xk ' ck1a1b′1 + · · ·+ ckRaRb′R PCA

A (I × R): “subjects” matrix
B (J × R): “variables” matrix
C (K × R): “situations” matrix
Ck (R × R): Diag(ck·)

Minimize loss function:

fCP(A,B,C) =
K∑

k=1

‖Xk − ACkB′‖2
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CANDECOMP/PARAFAC (CP)

Parallel proportional profiles (Cattell, 1944):
To simultaneously analyze several matrices together, find a set of common factors
(A, B) that can be fitted with different weights (Ck , k = 1, . . . ,K ) to many data
matrices at the same time.
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CANDECOMP/PARAFAC (CP)

Similarities between PCA and CP:

CP decomposes an array as a sum of rank one arrays.

rank(X)=minimum number of rank one arrays for which CP gives perfect fit

Differences between PCA and CP:

Only iterative algorithm for CP.

CP is usually unique.

Preprocessing three-way data can be hard.
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INDSCAL

S: I × I × K array with symmetric slices
(e.g., set of correlation matrices)

Model

Sk = ACkA′ + Ek CP . . .

INDSCAL is CP with the constraint A = B.

Minimize loss function:

fIND(A,C) =
K∑

k=1

‖Sk − ACkA′‖2
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3MPCA

Model more general than CP and INDSCAL:

X =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr (ap ◦ bq ◦ cr ) + E

ar ◦ br ◦ cr : rank-1 array

3MPCA decomposes X as a sum of rank-1 arrays

rank(X)6 PQR (usually rank(X) � PQR)

3MPCA reduces to CP when the core array has a super-diagonal form:

G =


1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1


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3MPCA – Freedom of rotation

Motivation from PCA:
For S nonsingular, X = AB′ = (AS)(S−1B′).

For 3MPCA:
For S, T, and U nonsingular,

G = [G1| · · · |GR ] −→ S′G(U⊗ T)
A −→ A(S′)−1

B −→ B(T′)−1

C −→ C(U′)−1

This is known as a Tucker transformation.
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Simplifying three-way arrays

Goal:
Find suitable linear combinations of frontal (and/or lateral and/or horizontal)
slices that allow transforming X into an “equivalent” array with many zero entries.

Formally:
Transform X = [X1| · · · |XK ] to SX(U⊗ T) := H = [H1| · · · |HK ].

Many zero entries in H = few nonzero entries.

Weight of H = # nonzero entries of H.

Why doing this?

1 Facilitate interpretation of 3MPCA decompositions
(e.g., rotate the core G).

2 Constrained 3MPCA: Distinguish between tautologies and non-trivial models.

3 Mathematical applications: Typical rank, maximal rank.
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Some examples in literature

Diagonalize frontal slices of G (P = Q).
(Cohen, 1974, 1975; MacCallum, 1976; Kroonenberg, 1983)

“Super-diagonalize” G (P = Q = R; Kiers, 1992).
Kiers’ SIMPLIMAX (1998):
G −→ minimize ssq (m smallest elements)
Other examples may be found in: Murakami, ten Berge, and Kiers (1998),
ten Berge and Kiers (1999), and Rocci and ten Berge (2002).

One of my PhD’s goals:
Simplify arrays with symmetric slices.
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Symmetric-slice arrays

Consider X = [X1| · · · |XK ]: order I × I × K .
Assume that:

X is randomly sampled from a continuous distribution with symmetry
constraint (X′k = Xk , ∀k).

The slices Xk linearly independent.

A symmetry-preserving transformation of X is of the form

Hl = S′
(∑

k

uklXk

)
S, l = 1, 2, . . . ,K ,

with SI×I and UK×K nonsingular.

The goal is to introduce as many zeros in H as possible.

I used the Orthogonal Complement Method (OCM; Rocci & ten Berge,
2002), but constrained to symmetry.
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Symmetric slice arrays – OCM

The OCM from Rocci and ten Berge (2002) generalized to symmetric slice arrays:
(Notation: Xvec∗ = [vec∗(X1)| . . . |vec∗(XK )])

1 Given the array Xvec∗ , compute an orthogonal complement X
(c)
vec∗ .

2 Compute H
(c)
vec∗ = (S−1 ⊗ S−1)X

(c)
vec∗V in such a way that H

(c)
vec∗ is in simple

form.

3 Find the orthogonal complement of H
(c)
vec∗ in simple form, say Hvec∗ .

4 Find matrix U such that Hvec∗ = (S′ ⊗ S′)Xvec∗U .
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Symmetric slice arrays – I × I × Kmax

Maximum number of lin. ind. slices: Kmax = I (I+1)
2 .

The set of frontal slices form a basis for the space of RKmax , which is
equivalent to the space of all symmetric I × I matrices.

Therefore, a simple basis is easy to find (Rocci & ten Berge, 1994):
(notation: ei= column i of II )

eie
′
i , i = 1, . . . , I

eie
′
j + eje

′
i , 1 6 i < j 6 I

Example: I = 3  1 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 1 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 1


 0 1 0

1 0 0
0 0 0

 ,

 0 0 1
0 0 0
1 0 0

 ,

 0 0 0
0 0 1
0 1 0



Note: Only frontal slices were mixed.

17/59



Symmetric slice arrays – 2× 2× K

Kmax = 3, so K = 1, 2, 3

2× 2× 3: done (Kmax situation)

2× 2× 1: use EVD

X −→
[

1 0
0 α

]
; if α < 0 :

[
0 1
1 0

]
2× 2× 2 = orthogonal complement of 2× 2× 1

X −→
[
α 0 0 1
0 −1 1 0

]
; if α < 0 :

[
1 0 0 0
0 0 0 1

]
Conclusion for 2× 2× 2:

I weight 4 is always possible

I if Xc has eigenvalues of both signs then weight 2 is possible
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Symmetric slice arrays – 3× 3× K

Kmax = 6, so K = 1, 2, 3, 4, 5, 6

3× 3× 6: done (Kmax situation)

3× 3× 1: use EVD

X −→

 d1 0 0
0 d2 0
0 0 d3

 ; if d2d3 < 0 :

 d1 0 0
0 0 2d2
0 2d2 0


3× 3× 5 = orthogonal complement of 3× 3× 1

X −→

[
1 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 α 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 β 0 0 0 1 0 0 0 1 0

]
[

0 0 0 0 0 0 0 1 0 0 0 1 α 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

]
Conclusion for 3× 3× 5:

I weight 10 is always possible
I if Xc has eigenvalues of both signs then weight 9 is possible
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Symmetric slice arrays – 3× 3× K

3× 3× 2: see EVD(X−11 X2)
I real eigenvalues

X −→

 0 0 0 β 0 0
0 α 0 0 0 0
0 0 1 0 0 1

 ; also:

 −α 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0


I complex eigenvalues

X −→

 −α 0 0 0 0 0
0 1 0 0 0 1
0 0 −1 0 1 0


Conclusion for 3× 3× 2:

I weight 5 is always possible

I if X−1
1 X2 has real eigenvalues then weight 4 is possible
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Symmetric slice arrays – 3× 3× K

3× 3× 4 = orthogonal complement of 3× 3× 2 1 0 0 1 0 0 0 1 0 0 0 1
0 α 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 δα 0 0 0 1 0 0

 . . .

(δ = 1/− 1 in real/complex case)

Conclusion for 3× 3× 4:
I weight 8 is always possible

3× 3× 3: Simple form in Tendeiro, ten Berge, and Choulakian (2013), shown
to work almost surely: h 0 0 0 0 1 0 1 0

0 0 1 0 h 0 1 0 0
0 1 0 1 0 0 0 0 h


Weight 9 always possible (almost surely).
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Symmetric slice arrays – 4× 4× K

Kmax = 10, so K = 1, 2, · · · , 8, 9, 10

Summarizing, simple forms worked out for:

4× 4× 10: Kmax situation

4× 4× 1: Use EVD (weight 4)

4× 4× 9 = orthogonal complement of 4× 4× 1
I Weights 16, 7, or 18.

4× 4× 2: See EVD(X−11 X2)
I real eigenvalues: weight 6
I one pair of complex eigenvalues: weight 7
I two pairs of complex eigenvalues: weight 8

4× 4× 8 = orthogonal complement of 4× 4× 2
I any symmetric slice 4× 4× 8 array can almost surely be simplified into one

out of two weight 18 arrays

22/59



Maximal simplicity

Question: Can simpler targets be found for the cases previously presented?

Answer:

3× 3× K for K = 1, 2, 4, 5, 6: NO (proved)

4× 4× K for K = 8, 9: NO(?) (simulation)
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Example of application: Typical rank

X: symmetric slice 3× 3× 4 array

ten Berge et al. (2004) �� ��typical rank (X)= {4, 5}
rank=4?, rank=5?
Check if roots of a certain fourth degree polynomial are real and distinct.

Using 3 × 3 × 4 simple form we concluded that:

rank (X)=4 iif δ = 1 and α > 0 (and rank is 5 otherwise)

a CP decomposition is now straightforward

Example: rank=4

A =
[

1 1 1 1
0 0

√
α −

√
α√

α −
√
α 0 0

]
,C =

[
0 0 0.5 0.5
0.5 0.5 0 0

0 0 0.5
√
α−1 −0.5

√
α−1

0.5
√
α−1 −0.5

√
α−1 0 0

]
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Study 1 – Conclusions

Simplification achieved for some types of arrays with symmetric frontal slices;
closed form rotation matrices available.

Maximal simplicity achieved (mathematically proved or empirically verified via
SIMPLIMAX).

Typical rank considerations come as nice follow-ups.

Considerations:

3MPCA core arrays are not “randomly sampled from a continuous
distribution”, but do behave as such.

Valid contribution for Matrix Theory: Simultaneous reduction of more than a
pair of matrices to sparse forms is scarce.

Developments:

Extend results and procedures to other orders.

Address issues like: Maximal simplicity, typical rank.
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Motivation – The KHL data

Kruskal, Harshman, Lundy (1983, 1985):

X =

[
1 0 0 1
0 −1 1 0

]
Random starts of CP with r = 2 components invariably give f = 2.

It must be the global minimum.
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Motivation – The KHL data

No!

ten Berge, Kiers, De Leeuw (1988)

inf(f )=1

It must be LOCAL minima.
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Motivation – The KHL data

No!

What we found

All solutions with f = 2 are NOT minima (not even local!).

�� ��How can you reach such a conclusion?
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Some optimization background

Goal

Given a scalar function f : Rn −→ R, how to find extremes (minima, maxima)?

Three types of points to consider:

1 Points in the border of the domain of f ;
Example: f (x) = x3, x between −1 and 1.

2 Points where f is not twice continuously differentiable;
Example: f (x) = |x |, for x = 0.

3 Points where f is twice continuously differentiable.x�� ��our goal
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Some optimization background

How to optimize f : Rn −→ R:

Step 1 Compute partial derivatives = 1st order derivatives for each variable, while
the others are “constant”.
Find stationary points (SPs) by solving the system of equations

fi :=
∂f (x1, . . . , xn)

∂xi
= 0, i = 1, . . . , n.

Step 2 Analyze 2nd order derivatives = eigenvalues of the Hessian matrix:

Hess =

 f11 · · · f1n
...

. . .
...

fn1 · · · fnn


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Some optimization background

Decision rule:

Hess is positive definite =⇒ SP is minimum

Hess is negative definite =⇒ SP is maximum

Hess is indefinite =⇒ SP is saddle point

32/59



Constrained optimization

Method of Lagrange multipliers
Useful to find maxima/minima of a function subject to constraints.

Unconstrained. Constrained to red points.

No minimum, no maximum. Minimum, Maximum.
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The equivalence problem

S: I × I × K array with I × I symmetric frontal slices

Carroll and Chang (1970) suggested to use CP . . . to fit the
INDSCAL . . . model:

Sk = ACkB′ + Ek ,

and then “hope” that A is columnwise proportional to B
(A and B equivalent).

A and B seem equivalent in practical applications. However, contrived
counterexamples do exist.

34/59



The equivalence problem

Result: A 6= B is possible at global minima if slices are indefinite
(ten Berge and Kiers, 1991).

Example:

S =

[
1 0 0 0 0 2
0 −1 0 0 −2 0
0 0 1 2 0 0

]

A
∗ =

[ √
1/3

√
0.5

−
√

1/3 0√
1/3 −

√
0.5

]
,B
∗ =

[ √
1/3

√
0.5√

1/3 0√
1/3 −

√
0.5

]
,C
∗ =

[
2 2
0 −2

]
.

This solution minimizes CP’s loss function:

fCP(A,B,C) = ‖S1 − AC1B′‖2 + ‖S2 − AC2B′‖2 > 5

and
fCP(A∗,B∗,C∗) ≡ 5
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The equivalence problem: R = 1

Result: A 6= B is only possible at non-optimal points if slices are non-negative
definite (ten Berge and Kiers, 1991).

Example:

S =

[
3 1 0 3 −1 0
1 3 0 −1 3 0
0 0 0 0 0 1

]

A
∗ =

[
1
0
0

]
,B
∗ =

[
0
1
0

]
,C
∗ =

[
1
−1

]
.

This solution does not minimize CP’s loss function:

fCP(A,B,C) = ‖S1 − AC1B′‖2 + ‖S2 − AC2B′‖2 > 21

but
fCP(A∗,B∗,C∗) ≡ 39

These points are, in fact, saddle points (Bennani Dosse and ten Berge, 2008).

What happens for R > 1?
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Second-order differential structure

Question:
What is the general situation when R > 1?

Approach to find an answer:

Use simulation (run CP lots of times).

Analyze the first and second-order differential structures of the loss function
of CP

fCP(A,B,C) =
K∑

k=1

‖Xk − ACkB′‖2

But how to do this? Number of variables is too big.
Example: 2× 2× 2 array, R = 2 components�� ��fCP(A,B,C) has 12 variables
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Second-order differential structure

fCP(A,B,C) =
K∑

k=1

‖Xk − ACkB′‖2 (1)

Procedure:

Parameter elimination:
Express C as a function of A and B (valid at stationary points):

row i of C = (A′A ∗ B′B)−1diag(A′XiB)

Simplify target function (1).

Use matrix differential calculus: The variables to differentiate for are matrices
A, B.

Constrain A,B:
I Columns of unit length (identification constraint).
I Orthonormal.
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Second-order differential structure

Apply the same procedure to INDSCAL’s loss function:

fIND(A,C) =
K∑

k=1

‖Xk − ACkA′‖2

What was done – for both fCP and fIND:

Jacobian and Hessian matrices computed in closed form.

Second-order sufficient condition is now available to label SPs.
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Applications 1 – Following ten Berge (1988)

SVD-approach (ten Berge, 1988)

INDSCAL model under orthogonality constraints

Claim: The algorithm sometimes stops at local optima

But saddle points are possible (for contrived examples).
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Applications 1 – Following ten Berge (1988)

Example:

S =

[
3 1 0 3 −1 0
1 3 0 −1 3 0
0 0 0 0 0 1

]
Global minimum (f = 1)

A
∗ =

[ √
0.5 −

√
0.5√

0.5
√
0.5

0 0

]
,C
∗ =

[
4 2
2 4

]
.

Non-optimal SPs: Saddle points

A∗ =

[
0 1
1 0
0 0

]
C∗ =

[
3 3
3 3

]
f = 5

A∗ =

[ √
0.5 0√
0.5 0
0 1

]
C∗ =

[
4 0
2 1

]
f = 20

A∗ =

[
0 1
0 0
1 0

]
C∗ =

[
0 3
1 3

]
f = 22
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Applications 1 – Following ten Berge (1988)

What happens for randomly generated data?

Simulation study

150 3× 3× 3 symmetric slice arrays with Gramian slices

SVD-approach with R = 2 components;
10 different initializations per array

The second-order differential structure was analysed in each case.

Results

Saddle points did not occur: There are no indications that the SVD-approach
converges to saddle points for randomly generated data.

Local optima occurred for ∼ 8% of the arrays.
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Applications 2 – The equivalence problem

Eleven cases considered.
(R > 1 component, arrays with symmetric 3× 3 slices)

Two types of arrays: Gramian vs non-Gramian slices.

100 runs per array.

Results:

A 6= B did not occur for Gramian slices.

A 6= B did occur for indefinite slices only in “sick” cases (degenerate).

Saddle points happen rarely.
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Study 2 – Conclusions

Loss functions of CP and INDSCAL were transformed into “simpler”
optimization functions.

First and second order derivatives were derived.

These tools allow to identify saddle points.
If there is a saddle point: Rerun the algorithm!

Simulations showed that saddle points do not occur frequently, but they do
occur with positive probability.
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Item response theory

IRT models are nowadays very popular psychometric tools.

Advantages over classical test theory (see, e.g., Embretson & Reise, 2000):
I Scoring examinees and items is (theoretically) sample invariant

(up to a linear transformation).
I Both persons and items placed on the same scale.
I Precision of measurement varies along the latent trait.
I There is a multitude of models that apply to varying measurement situations.
I Adaptive testing easy to implement.
I . . .

Popular models:

For dichotomous data: 1PLM (Rasch model), 2PLM, 3PLM, 4PLM.

For polytomows data: NRM, GRM, PCM, RSM, GGUM

(but much, much more!!)
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Item response theory

47/59



Item response theory
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Item response theory

I have explored two topics within IRT, namely person-fit analysis and (recently)
unfolding models.

Below I provide a brief account on each topic.
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Person-fit analysis

A lot of effort in IRT is put of assessing model fit
(e.g., consider the recent IMPS 2017 meeting).

Various methods/statistics exist, both at the item (“columns” direction) and
the scale levels.

However, person-level misfitting response patterns (“rows direction”) are also
worrisome:

I They affect the estimation of person trait.
I They may also affect the estimation of item parameters.
I They distort rank ordering of persons (problematic, e.g., in selection settings).

50/59



Person-fit analysis – Mockup example

Easy −→ Difficult
Student It1 It2 It3 It4 It5 It6 It7 It8 It9 It10
A 1 1 1 1 1 1 1 0 0 0
B 1 1 0 1 0 0 1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

Warm-up?? 0 0 0 1 1 1 0 1 0 1
Cheater?? 1 1 0 1 0 0 1 1 1 1
Random?? 1 0 1 0 0 0 1 0 0 1

51/59



Person-fit analysis

Statistical methods have been developed to identify such aberrant response
patterns (see Sijtsma & Meijer, 2001 for an overview).

I’ve written various papers on statistical techniques aimed at identifying
aberrant response patterns (in the context of CATs, cognitive measurement,
personality measurement, using parametric and nonparametric models, etc.).

I compiled the most used person-fit statistics in an R package (PerFit).

Some caveats:

Power is typically low (due to typically few items available per person).

Person-fit analysis may assist test forensics.
However, they can not provide, on their own, conclusive answers.
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Unfolding models

The mostly used IRT models are cumulative:
The larger θ, the larger the item’s expected score.
This follows the widely spread Likert’s philosophy (early 1930s).

A different class of models, commonly referred to as unfolding, condition the
expected item score on the distance between the item and the person’s
location on the latent trait.

This principle was first established by Thurstone in the late 1920s. It is
sensible in contexts measuring attitudes or preferences (involving
self-introspection).
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Unfolding models

The most popular unfolding model in use nowadays is the GGUM (generalized
graded unfolding model; Roberts et al., 1996, 2000):

P(Zi = z |θn) =
f (z) + f (M − z)

C∑
w=0

[
f (w) + f (M − w)

] ,

with

f (w) = exp

{
αi

[
w(θn − δi )−

w∑
k=0

τik

]}
, w = 0, . . . ,M.

C = number of observable response categories

M = 2C + 1

αi : Discrimination of item i

δi : Difficulty of item i

τik : Threshold parameters of item i
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Unfolding models
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Unfolding models
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Unfolding models

About the unfolding mechanism:

What matters the most is the perceived distance between the item’s
statement and the person’s standing.

Conceivably, more of the latent trait may decrease the probability of
endorsement.

A person may disagree with an item statement’s because she either believes
too strongly in favor of it (‘too far’ to the right) or against it (‘too far’ to the
left).

Altogether, this conceptualization of item endorsement is fundamentally distinct
from the much more common dominant process.
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Unfolding models

My current work with the GGUM includes:

Extending person-fit strategies to this type of model.

Explore empirical applications, because literature on this is scarce and
inconclusive (ongoing).

Revamp the classic algorithm (MML) using R (in preparation).

Explore Bayesian estimation (starting soon).

. . .
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ありがとう。

j.n.tendeiro@rug.nl

59/59


	Three-way models
	Models
	Study 1: Simplicity
	Study 2: First- and second-order derivatives

	Item response theory
	Background
	Person-fit analysis
	Unfolding models


