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Motivation

Total scores often provide an incomplete picture of test respondents.

Analysis of response patterns across items is desirable and
recommended (ITC, 2013, p. 23).
Advantages:

I Better understanding of the data on the person level.
I Clarify what unusual answering behaviors occur.

Person-fit analysis offers various statistical approaches.
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Motivation

Idea: Compare observed with expected item score patterns.

Expected = Based on:
I IRT models.
I The entire groups of respondents.

Large differences −→ (potentially) misfitting or aberrant patterns.
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Motivation

A lot of overview papers and simulation studies exist.

Empirical applications are much more sparse in published papers.

We conducted a person-fit study based on real high-stakes
educational data.

We used existing techniques only.
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Person fit analysis

Nonparametric IRT models (NIRT; Sijtsma & Molenaar, 2002) were
fitted to the data.

Model assumptions were checked:
I Unidimensionality.
I Local independence.
I Monotone IRFs.

Useful R package: mokken (van der Ark, 2007, 2012).

These assumptions define the Monotone Homogeneity Model
(MHM; Mokken, 1971).
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Person fit analysis

We mostly used group-based person-fit indices.

The choice of indices was based on prior studies
(e.g., Karabatsos, 2003; Meijer & Sijtsma, 2001; Tendeiro & Meijer, 2013).

Some indices used:
I C∗ (Harnisch & Linn, 1981).
I HT (Sijtsma, 1986; Sijtsma & Meijer, 1992).
I U3 (van der Flier, 1982).

Useful R package: PerFit (Tendeiro, 2014).
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Challenges of empirical applications

Some challenges:

1 Consider model fit.

2 Choose most adequate person-fit indices.

3 Set up reasonable cutoff scores.

4 Perform a posterior “qualitative explanation step” (Rupp, 2013).

We addressed the first three challenges in our study.
The 4th challenge was unfeasible.
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Data

Two subscales of a large-scale high-stakes educational test.
I Section One: 23 (set-based) items.
I Section Two: 25 items.

All items have five response alternatives.

N = 4, 000 respondents.
Perfect response vectors were removed from each Section.
Final sample sizes:

I Section One: N = 3, 955.
I Section Two: N = 3, 981.

Factors taken into account:
I Gender.
I Ratial/ethnic subgroups.
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Results – Model fit

Some NIRT model-checks for both subscales:

All inter-item covariances were positive.
(Necessary condition; Sijtsma & Molenaar, 2002.)

All scalability coefficients between 0 and 1.
(Necessary condition; Sijtsma & Molenaar, 2002.)

Monotonicity: No severe violations were found.
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Results – Model fit

Unidimensionality: We looked at
I DETECT D (Kim, 1994; Stout et al., 1996; Zhang & Stout, 1999).
I Scalability H (Sijtsma & Molenaar, 2002).

Section One Section Two
D = .60a D = .21a

H = .20b H = .18b

a Between .1 (essential UD) and 1 (MD); Stout (1990).
b Below the usual threshold c = .3.

Some comments:

I Passage-based item sets might explain the dimensionality problem in
Section One (not ideal).

I Item discrimination is moderate — typical of cognitive data.
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Results – Person fit results (Section One)
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83% of the extreme
response patterns were
jointly flagged by the three
indices.
(Section Two: 82%.)
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Results – Background variables

Gender: No differences.

First time/Retaking test: No differences.

Ratial/Ethnic subgroups:

One subgroup performed consistently worse on the test. It
was later found that about 75% of the respondents in this
groups were non-native English speakers.

Without further information, we speculate that test performance was
affected by English language deficiencies.
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Results – Extreme item patterns

Many large
negative residuals
(i.e., incorrect
answer to easy
items).

Not so many
large positive
residuals (i.e.,
correct answer to
difficult items).

Guessing may
have played a role
for most of these
respondents.
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Results – Total scores

Total scores of flagged respondents are very close to the sample’s
total score mean.

Person-fit inspections do provide added information.
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Conclusions

Inspecting item patterns provides valuable information concerning
responding behavior (over and above total scores).

Respondents with unusual response pattern were identified,
interpretation of results was attempted.
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Limitations

We were unable to perform a “posterior qualitative explanation step”
(Rupp, 2013).

This is especially difficult in a high-stakes educational context.

Other settings are more suitable for this (e.g., longitudinal settings in
both educational and clinical environments).
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Future work

Set up a study which allows following up several classes of students
thorugh an entire academic year.

Conduct follow-up inspections.
Goal: Enhance interpretation, help profiling students, provide
feedback to both lecturers and students.
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Thank you

Questions?
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