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Definition

Idea
three-way arrays:
generalize matrix
structure to 3D
loaf-of-bread structure

Examples of three-way data
different anxiety measures,
different circumstances,
various subjects
sales of different products,
in different shops, in
different weeks
job requirements for
various jobs, according to
various job analysts
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SLICES of a three-way array

Three-way array

Horizontal slices

Lateral slices

Frontal slices (Xk )
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FIBERS of a three-way array
Three-way array

Horizontal fibers (xik )

Vertical fibers (xjk )

Depth fibers (xij)
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Unfolding a three-way array
Frontal slices (Xk )

Matricizing X

Notation: X = [X1| · · · |XK ]
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PCA

X : matrix of order I × J (I=subjects, J=variables)
Goal: representation of variables in low-space dimension.�

�
�
�xij =

R∑
r=1

air bjr + eij . . .

xij = score of subject i on variable j
air = score of subject i on component r
bjr = loading of variable j on component r
eij = residual error
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PCA – other formulation�
�

�
�X =

R∑
r=1

(ar ◦ br ) + E . . .

ar ◦ br : rank-1 matrix
PCA decomposes X as a sum of rank-1 matrices
rank(X): minimum R such that E ≡ 0
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CANDECOMP/PARAFAC (CP)

X : array of order I × J × K (I=subjects, J=variables, K =situations)
Goal: find components for subjects, variables and situations.�

�
�
�xijk =

R∑
r=1

air bjr ckr + eijk ,
PCA

. . .

xijk = score of subject i on variable j on situation k
air = score of subject i on component r
bjr = loading of variable j on component r
ckr = loading of situation k on component r
eijk = residual error
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CP – other formulation

�
�

�
�X =

R∑
r=1

(ar ◦ br ◦ cr ) + E
PCA

. . .

ar ◦ br ◦ cr : rank-1 array
CP decomposes X as a sum of rank-1 arrays
rank(X): minimum R such that E ≡ 0
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Tucker3

X : array of order I × J × K (I=subjects, J=variables, K =situations)
Goal: find components for subjects, variables and situations.�

�
�
�xijk =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr
(
aipbjqckr

)
+ eijk , CP

xijk = score of subject i on variable j on situation k
aip = score of subject i on component p
bjq = loading of variable j on component q
ckr = loading of situation k on component r
gpqr = weight (core array G, order P ×Q × R)
eijk = residual error
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Tucker3 – other formulations�
�

�
�X =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr (ap ◦ bq ◦ cr ) + E CP

ar ◦ br ◦ cr : rank-1 array
Tucker3 decomposes X as a sum of rank-1 arrays
rank(X)6 PQR (usually rank(X)� PQR)

Formula using unfolded notation

X (I × J × K ) −→ X = [X1|X2| · · · |XK ] (fitted part)
G (P ×Q × R) −→ G = [G1|G2| · · · |GR]�� ��X = AG(C′ ⊗ B′)
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Tucker3 – seeing CP as particular situation

Tucker3 reduces to Candecomp/Parafac when the core array has
a super-diagonal form:

G =


1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1


only interactions between corresponding components are
accounted for in CP

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 13 / 35



Tucker3 – freedom of rotation

PCA’s freedom of rotation (motivation)
S nonsingular

X = AB′

= (AS)(S−1B′)

Tucker3’s freedom of rotation
S, T, U nonsingular

A −→ A(S′)−1

B −→ B(T′)−1

C −→ C(U′)−1

Ga = [G1| · · · |GR] −→ S′Ga(U⊗ T)

�� ��Tucker transformation
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Tucker3 – illustration (Kiers & Van Mechelen (2001))
X=data set of. . .

6 individuals: Anne, Bert, Claus, Dolly, Edna, Frances
5 response variables: emotional, sensitive, caring, thorough,
accurate
4 different situations: doing an exam, giving a speech, family
picnic, meeting a new date

Component matrix A
Individual Femininity Masculinity
Anne 1.0 0.0
Bert 0.0 1.0
Claus 0.0 1.0
Dolly 1.0 0.0
Edna 0.5 0.5
Frances 1.0 0.0
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Tucker3 – illustration (Kiers & Van Mechelen (2001))

Component matrix B
Response Emotionality Conscientiousness
Emotional 1.0 0.0
Sensitive 1.0 0.0
Caring 0.6 0.4
Thorough 0.0 1.0
Accurate 0.0 1.0

Component matrix C

Situation Performance Social
situations situations

Doing an exam 1.0 0.0
Giving a speech 0.8 0.2
Family picnic 0.0 1.0
Meeting a new date 0.3 1.2
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Tucker3 – illustration (Kiers & Van Mechelen (2001))

Core array G
Performance situations

Emotionality Conscientiousness
Femininity 0.0 3.0
Masculinity 0.0 2.0

Social situations
Emotionality Conscientiousness

Femininity 3.0 0.0
Masculinity 1.0 1.0
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Simplifying three-way arrays

Goal
Find suitable linear combinations of frontal (and/or lateral and/or
horizontal) slices that allow transforming X into an “equivalent” array
with many zero entries.

Formally: S, T, U=?: H = SX(U⊗ T)
↓

many zero entries = few nonzero entries

weight of H = # nonzero entries of H
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Simplifying three-way arrays
�� ��Why?

1 Facilitate interpretation of 3PCA decompositions

Example: rotate G so that several entries become zero

?
less interactions of components to account for

during interpretion of 3PCA

2 Constrained 3PCA: distinguish between tautologies and non-trivial
models

3 Mathematical applications: typical rank, maximal rank

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 19 / 35



Simplifying three-way arrays
�� ��Why?

1 Facilitate interpretation of 3PCA decompositions

Example: rotate G so that several entries become zero

?
less interactions of components to account for

during interpretion of 3PCA

2 Constrained 3PCA: distinguish between tautologies and non-trivial
models

3 Mathematical applications: typical rank, maximal rank

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 19 / 35



Simplifying three-way arrays
�� ��Why?

1 Facilitate interpretation of 3PCA decompositions

Example: rotate G so that several entries become zero

?
less interactions of components to account for

during interpretion of 3PCA

2 Constrained 3PCA: distinguish between tautologies and non-trivial
models

3 Mathematical applications: typical rank, maximal rank

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 19 / 35



Some examples (I-III)

Cohen (1974, 1975), MacCallum (1976), Kroonenberg (1983):
“diagonalize” frontal slices of G (P = Q)
Kiers (1992): “super-diagonalize” G (P = Q = R)
Kiers (1998): SIMPLIMAX

G −→ minimize ssq (m smallest elements)

X of order P ×Q × R, P = QR
Example: X of order 6× 3× 2

X −→



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = X−1X(I2 ⊗ I3)
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Some examples (II-III)

X of order P ×Q × R, P = QR − 1
Murakami, Ten Berge & Kiers (1998)
Example: X of order 5× 3× 2

X −→


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
µ1 0 0 0 µ2 0


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Some examples (III-III)

X of order P ×Q × 2
P > Q: Ten Berge & Kiers (1999)

X −→
[

IQ
0

∣∣∣∣ 0
IQ

]
P = Q: Rocci & Ten Berge (2002)
Example: X = [X1|X2] of order 3× 3× 2 1 0 0 0 0 0

0 0 0 0 1 0
0 0 µ1 0 0 µ2

 or

 1 0 0 0 0 0
0 1 0 0 0 µ
0 0 1 0 −µ 0


(X−1

1 X2 has real eigs.) (X−1
1 X2 has complex eigs.)

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 22 / 35



Our goal: simplifying arrays with SYMMETRIC slices

Example: set of similarity matrices over time
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Symmetric-slice arrays

X = [X1| · · · |XK ]: order I × I × K
I assume: X is randomly sampled from a continuous distribution with

symmetry constraint (Xk symmetric, ∀k )
I slices Xk linearly independent

I number of slices: K = 1,2, . . . ,
I(I + 1)

2︸ ︷︷ ︸
Kmax

symmetry-preserving transformation of X
I SI×I , UK×K nonsingular

Hl = S′
(∑

k

uklXk

)
S, l = 1,2, . . . ,K

I GOAL: introduce as many zeros in H as possible

Orthogonal Complement Method: “symmetric” version

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 24 / 35



Symmetric slice I × I × Kmax arrays
{frontal slices} = basis for the space of symmetric I × I matrices
simple basis for the same space (Rocci & Ten Berge(1994)):
(notation: ei= column i of II)

eie′i , i = 1, . . . , I
eie′j + eje′i , 1 6 i < j 6 I

Example: I = 3 1 0 0
0 0 0
0 0 0

 ,
 0 0 0

0 1 0
0 0 0

 ,
 0 0 0

0 0 0
0 0 1


 0 1 0

1 0 0
0 0 0

 ,
 0 0 1

0 0 0
1 0 0

 ,
 0 0 0

0 0 1
0 1 0


frontal slice mix suffices
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Symmetric slice 2× 2× K arrays

Kmax = 3, so K = 1,2,3
2× 2× 3: done (Kmax situation)
2× 2× 1: use EVD

X −→
[

1 0
0 α

]
; if α < 0 :

[
0 1
1 0

]
2× 2× 2 = orthogonal complement of 2× 2× 1

X −→
[
α 0 0 1
0 −1 1 0

]
; if α < 0 :

[
1 0 0 0
0 0 0 1

]
Conclusion for 2× 2× 2:

I weight 4 is always possible
I if Xc has eigenvalues of both signs then weight 2 is possible
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Symmetric slice 3× 3× K arrays
Kmax = 6, so K = 1,2,3,4,5,6
3× 3× 6: done (Kmax situation)
3× 3× 1: use EVD

X −→

 d1 0 0
0 d2 0
0 0 d3

 ; if d2d3 < 0 :

 d1 0 0
0 0 2d2
0 2d2 0


3× 3× 5 = orthogonal complement of 3× 3× 1

X −→
[

1 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 α 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 β 0 0 0 1 0 0 0 1 0

]
[

0 0 0 0 0 0 0 1 0 0 0 1 α 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

]
Conclusion for 3× 3× 5:

I weight 10 is always possible
I if Xc has eigenvalues of both signs then weight 9 is possible
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Symmetric slice 3× 3× K arrays

3× 3× 2: see EVD(X−1
1 X2)

I real eigenvalues

X −→

 0 0 0 β 0 0
0 α 0 0 0 0
0 0 1 0 0 1

 ; also:

 −α 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0


I complex eigenvalues

X −→

 −α 0 0 0 0 0
0 1 0 0 0 1
0 0 −1 0 1 0


Conclusion for 3× 3× 2:

I weight 5 is always possible
I if X−1

1 X2 has real eigenvalues then weight 4 is possible

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 28 / 35



Symmetric slice 3× 3× K arrays

3× 3× 4 = orthogonal complement of 3× 3× 2 1 0 0 1 0 0 0 1 0 0 0 1
0 α 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 δα 0 0 0 1 0 0

 3× 3× 4

(δ = 1/− 1 in real/complex case)

Conclusion for 3× 3× 4:
I weight 8 is always possible

3× 3× 3: still open!
I when a 3× 3× 3 array has an orthogonal complement, it is also

3× 3× 3. . .
I simulation: a weight 9 pattern seems to be possible almost 90% of

the times
I to be continued (. . . )
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Symmetric slice 4× 4× K arrays
Kmax = 10, so K = 1,2, · · · ,8,9,10
4× 4× 10: done (Kmax situation)
4× 4× 1: use EVD

in general: X −→


d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4


if d1,d2,d3 > 0

d4 < 0
−→


d1 0 0 0
0 d2 0 0
0 0 0 2d3

0 0 2d3 0


if d1,d3 > 0

d2,d4 < 0
−→


0 2d1 0 0

2d1 0 0 0
0 0 0 2d3

0 0 2d3 0


4× 4× 9 = orthogonal complement of 4× 4× 1

I weight 18 is always possible
I depending on the signs of eigs(Xc) we can have weight 17 or 16
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Symmetric slice 4× 4× K arrays
4× 4× 2: see EVD(X−1

1 X2)
I real eigenvalues: weight 6 0 0 0 0 γ 0 0 0

0 α 0 0 0 0 0 0
0 0 β 0 0 0 δ 0
0 0 0 1 0 0 0 1


I one pair of complex eigenvalues: weight 7 α 0 0 0 γ 0 0 0

0 β 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 −1 0 0 1 0


I two pairs of complex eigenvalues: weight 8 1 0 0 0 0 γ 0 0

0 −1 0 0 γ 0 0 0
0 0 1 0 0 0 0 1
0 0 0 −1 0 0 1 0


Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices IOPS December 2010 31 / 35



Symmetric slice 4× 4× K arrays

4× 4× 8 = orthogonal complement of 4× 4× 2
I any symmetric slice 4× 4× 8 array can almost surely be simplified

into one out of two weight 18 arrays

Example: one of the targets ? 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0
0 ? 0 0 0 ? 0 0 0 ? 0 0 ? 0 0 0
0 0 0 ? 0 0 ? 0 0 0 0 0 0 0 0 0
0 0 ? 0 0 0 0 0 0 0 0 ? 0 0 0 0

∣∣∣∣∣∣∣
0 0 ? 0 0 0 0 ? 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 ?
? 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0
0 0 0 0 ? 0 0 0 0 0 0 0 0 ? 0 0


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Maximal simplicity

Question: can simpler targets be found for the cases previously
presented?

Answer:
3× 3× K for K = 1,2,4,5,6: NO (proved)
4× 4× K for K = 8,9: NO(?) (simulation)
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Example of application: typical rank
X: symmetric slice 3× 3× 4 array
Ten Berge et al. (2004)�� ��typical rank (X)= {4,5}
rank=4?, rank=5?
Check if roots of a certain fourth degree polynomial are real and
distinct.

Using 3× 3× 4 simple form , and applying the same reasoning as in Ten
Berge et al. (2004), we conclude that:

rank (X)=4 iif δ = 1 and α > 0 (and rank is 5 otherwise)
a CP decomposition is now straightforward

Example: rank=4

A =
[

1 1 1 1
0 0

√
α −

√
α√

α −
√
α 0 0

]
,C =

[
0 0 0.5 0.5

0.5 0.5 0 0
0 0 0.5

√
α−1 −0.5

√
α−1

0.5
√
α−1 −0.5

√
α−1 0 0

]
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Conclusions. Considerations. Developments
Conclusions

simplification achieved for some types of arrays with symmetric
frontal slices; closed form rotation matrices available
maximal simplicity achieved (mathematically proved or empirically
verified via SIMPLIMAX)
typical rank considerations come as nice follow-ups

Considerations
3PCA core arrays are not “randomly sampled from a continuous
distribution”, but do behave as if they were
valid contribution for Matrix Theory: simultaneous reduction of
more than a pair of matrices to sparse forms is scarce

Developments
extend results to other orders
address issues like: maximal simplicity, typical rank
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