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Definition

Idea
three-way arrays:
generalize matrix
structure to 3D
loaf-of-bread
structure

Examples of three-way data
different anxiety
measures, different
circumstances, various
subjects
sales of different
products, in different
shops, in different
weeks
job requirements for
various jobs, according
to various job analysts
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SLICES of a three-way array

Three-way array

Horizontal slices (Xi )

Lateral slices (Xj )

Frontal slices (Xk )
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Unfolding a three-way array

Frontal slices (Xk )

Matricizing X
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PCA – a 2D motivation
Extending PCA to 3D – Candecomp/Parafac
Extending PCA to 3D – Tucker3

PCA

X : matrix of order I × J (I=subjects, J=variables)
Goal: representation of variables in low-space dimension.�

�
�
�xij =

R∑
r=1

air bjr + eij . . .

xij = score of subject i on variable j
air = score of subject i on component r
bjr = loading of variable j on component r
eij = residual error

Jorge Tendeiro Three-way arrays with symmetric slices



Introducing three-way arrays
Methods to analyze three-way arrays

Simplifying three-way arrays

PCA – a 2D motivation
Extending PCA to 3D – Candecomp/Parafac
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PCA – other formulation
�
�

�
�X =

R∑
r=1

(ar ◦ br ) + E . . .

ar ◦ br : rank-1 matrix
PCA decomposes X as a sum of rank-1 matrices
rank(X): minimum R such that E ≡ 0
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CANDECOMP/PARAFAC (CP)

X : array of order I × J × K (I=subjects, J=variables,
K =situations)
Goal: find components for subjects, variables and situations.�

�
�
�xijk =

R∑
r=1

air bjr ckr + eijk ,
PCA

. . .

xijk = score of subject i on variable j on situation k
air = score of subject i on component r
bjr = loading of variable j on component r
ckr = loading of situation k on component r
eijk = residual error
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Methods to analyze three-way arrays
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PCA – a 2D motivation
Extending PCA to 3D – Candecomp/Parafac
Extending PCA to 3D – Tucker3

CP – other formulation

�
�

�
�X =

R∑
r=1

(ar ◦ br ◦ cr ) + E
PCA

. . .

ar ◦ br ◦ cr : rank-1 array
CP decomposes X as a sum of rank-1 arrays
rank(X): minimum R such that E ≡ 0

Jorge Tendeiro Three-way arrays with symmetric slices



Introducing three-way arrays
Methods to analyze three-way arrays

Simplifying three-way arrays

PCA – a 2D motivation
Extending PCA to 3D – Candecomp/Parafac
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Tucker3

X : array of order I × J × K (I=subjects, J=variables,
K =situations)
Goal: find components for subjects, variables and situations.�

�
�
�xijk =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr
(
aipbjqckr

)
+ eijk , CP

xijk = score of subject i on variable j on situation k
aip = score of subject i on component p
bjq = loading of variable j on component q
ckr = loading of situation k on component r
gpqr = weight (core array G, order P ×Q × R)
eijk = residual error
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PCA – a 2D motivation
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Tucker3 – other formulations�
�

�
�X =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr (ap ◦ bq ◦ cr ) + E CP

ar ◦ br ◦ cr : rank-1 array
Tucker3 decomposes X as a sum of rank-1 arrays
rank(X)6 PQR (usually rank(X) � PQR)

Formula using unfolded notation

X (I × J × K ) −→ X = [X1|X2| · · · |XK ] (fitted part)
G (P ×Q × R) −→ G = [G1|G2| · · · |GR]�� ��X = AG(C′⊗B′)
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Tucker3 – seeing CP as particular situation

Tucker3 reduces to Candecomp/Parafac when the core
array has a super-diagonal form:

G =


1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1


only interactions between corresponding components are
accounted for in CP
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Tucker3 – freedom of rotation

PCA’s freedom of rotation (motivation)
S nonsingular �

�
�
�

X = AB′

= (AS)(S−1B′)

Tucker3’s freedom of rotation
S nonsingular �

�
�
�

X = AG(C′ ⊗ B′)

= (AS)((S)−1G)(C′ ⊗ B′)

same applies to B and C

Jorge Tendeiro Three-way arrays with symmetric slices



Introducing three-way arrays
Methods to analyze three-way arrays

Simplifying three-way arrays

PCA – a 2D motivation
Extending PCA to 3D – Candecomp/Parafac
Extending PCA to 3D – Tucker3

Tucker3 – illustration (Kiers & Van Mechelen (2001))
X=data set of. . .

6 individuals: Anne, Bert, Claus, Dolly, Edna, Frances
5 response variables: emotional, sensitive, caring,
thorough, accurate
4 different situations: doing an exam, giving a speech,
family picnic, meeting a new date

Component matrix A

Individual Femininity Masculinity
Anne 1.0 0.0
Bert 0.0 1.0
Claus 0.0 1.0
Dolly 1.0 0.0
Edna 0.5 0.5
Frances 1.0 0.0
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PCA – a 2D motivation
Extending PCA to 3D – Candecomp/Parafac
Extending PCA to 3D – Tucker3

Tucker3 – illustration (Kiers & Van Mechelen (2001))

Component matrix B

Response Emotionality Conscientiousness
Emotional 1.0 0.0
Sensitive 1.0 0.0
Caring 0.6 0.4
Thorough 0.0 1.0
Accurate 0.0 1.0

Component matrix C

Situation Performance Social
situations situations

Doing an exam 1.0 0.0
Giving a speech 0.8 0.2
Family picnic 0.0 1.0
Meeting a new date 0.3 1.2
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PCA – a 2D motivation
Extending PCA to 3D – Candecomp/Parafac
Extending PCA to 3D – Tucker3

Tucker3 – illustration (Kiers & Van Mechelen (2001))

Core array G

Performance situations
Emotionality Conscientiousness

Femininity 0.0 3.0
Masculinity 0.0 2.0

Social situations
Emotionality Conscientiousness

Femininity 3.0 0.0
Masculinity 1.0 1.0
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Simplify three-way arrays

Goal
S, T, U=?: H = SX(U⊗ T)

↓
many zero entries = few nonzero entries
weight of H = # nonzero entries of H

Why?
Statistical reasons:

Tucker3: simpler core G =⇒ usually simpler interpretation
constrained Tucker3: distinguish between tautology and
non-trivial model

Mathematical reasons:
typical rank, maximal rank
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Some examples (I-II)

X of order P ×Q × R, P = QR
Example: X of order 6× 3× 2

X −→



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = X−1X(I2 ⊗ I3)
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Some examples (II-II)

X of order P ×Q × R, P = QR − 1
Murakami, Ten Berge & Kiers (1998)
Example: X of order 5× 3× 2

X −→


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
µ1 0 0 0 µ2 0


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Our goal: simplifying arrays with SYMMETRIC slices

Example: set of correlation matrices over time

Number of symmetric slices: K = 1, . . . ,
I(I + 1)

2︸ ︷︷ ︸
Kmax

.
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Some results proven

Simplification achieved for:
3× 3× K when K = 1, 2, 4, 5, 6
4× 4× K when K = 1, 2, 8, 9, 10
I × I × 1
I × I × (Kmax − 1)

I × I × Kmax

Example: symmetric slice array 3× 3× 4 . . . 1 0 0 1 0 0 0 1 0 0 0 1
0 µ1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 µ2 0 0 0 1 0 0


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Some results proven

Maximal simplicity
proved for all 3× 3× K presented
simulations using SIMPLIMAX (Kiers, 1998) seem to
confirm maximal simplicity for the targets deduced for
4× 4× K (ongoing)

Typical rank
Rules-of-thumb were deduced concerning inspection of typical
rank for 3× 3× K , K 6= 3 (completion of Ten Berge,
Sidiropoulos & Rocci, 2004)

example 3× 3× 4 : rank is 4 iff µ1, µ2 > 0, otherwise is 5
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Conclusions, developments

Conclusions
simplification achieved for some types of arrays with
symmetric frontal slices; closed form rotation matrices
available
maximal simplicity achieved (mathematically proved or
empirically verified via SIMPLIMAX)
typical rank considerations come as nice follow-ups

Developments
extend results to other orders
if possible, use procedures to address issues like: maximal
simplicity, typical rank
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