Simplicity transformations for three-way arrays with symmetric slices

Jorge Tendeiro

University of Groningen

12 December 2007 / IOPS Conference

Outline

- Introducing three-way arrays
 - Definitions, concepts
- Methods to analyze three-way arrays
 - PCA a 2D motivation
 - Extending PCA to 3D Candecomp/Parafac
 - Extending PCA to 3D Tucker3
- Simplifying three-way arrays
 - Purpose
 - Overview of existing simplicity results
 - Arrays with symmetric slices

Definition

Idea

- three-way arrays: generalize matrix structure to 3D
- loaf-of-bread structure

Examples of three-way data

- different anxiety measures, different circumstances, various subjects
- sales of different products, in different shops, in different weeks
- job requirements for various jobs, according to various job analysts

SLICES of a three-way array

Unfolding a three-way array

PCA

X : matrix of order $I \times J$ (I=subjects, J=variables) Goal: representation of variables in low-space dimension.

$$x_{ij} = \sum_{r=1}^{R} a_{ir} b_{jr} + e_{ij}$$

- x_{ii} = score of subject i on variable j
- a_{ir} = score of subject i on component r
- b_{jr} = loading of variable j on component r
- e_{ii} = residual error

PCA - other formulation

$$\mathbf{X} = \sum_{r=1}^{R} (\mathbf{a}_r \circ \mathbf{b}_r) + \mathbf{E}$$

C....

- $\mathbf{a}_r \circ \mathbf{b}_r$: rank-1 matrix
- PCA decomposes X as a sum of rank-1 matrices
- rank(X): minimum R such that $E \equiv 0$

CANDECOMP/PARAFAC (CP)

 $\underline{\mathbf{X}}$: array of order $I \times J \times K$ (I=subjects, J=variables, K=situations)

Goal: find components for subjects, variables and situations.

$$x_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr} + e_{ijk},$$

- x_{ijk} = score of subject i on variable j on situation k
- a_{ir} = score of subject i on component r
- b_{jr} = loading of variable j on component r
- c_{kr} = loading of situation k on component r
- eiik = residual error

CP – other formulation

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} (\mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r) + \underline{\mathbf{E}}$$

1...

- $\mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$: rank-1 array
- CP decomposes <u>X</u> as a sum of rank-1 arrays
- rank(X): minimum R such that $E \equiv 0$

Tucker3

 $\underline{\mathbf{X}}$: array of order $I \times J \times K$ (I=subjects, J=variables, K=situations)

Goal: find components for subjects, variables and situations.

$$x_{ijk} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{pqr} (a_{ip}b_{jq}c_{kr}) + e_{ijk},$$

- x_{ijk} = score of subject i on variable j on situation k
- a_{ip} = score of subject i on component p
- b_{iq} = loading of variable j on component q
- c_{kr} = loading of situation k on component r
- g_{pqr} = weight (core array \mathbf{G} , order $P \times Q \times R$)
- e_{iik} = residual error

Tucker3 – other formulations

$$\underline{\mathbf{X}} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{pqr} \left(\mathbf{a}_{p} \circ \mathbf{b}_{q} \circ \mathbf{c}_{r} \right) + \underline{\mathbf{E}}$$

- $\mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$: rank-1 array
- Tucker3 decomposes <u>X</u> as a sum of rank-1 arrays
- $\operatorname{rank}(\underline{\mathbf{X}}) \leqslant PQR$ (usually $\operatorname{rank}(\underline{\mathbf{X}}) \ll PQR$)

Formula using unfolded notation

$$\mathbf{X} (I \times J \times K) \longrightarrow \mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2 | \cdots | \mathbf{X}_K]$$
 (fitted part)

$$\mathbf{G}(P \times Q \times R) \longrightarrow \mathbf{G} = [\mathbf{G}_1 | \mathbf{G}_2 | \cdots | \mathbf{G}_R]$$

$$\left(\mathbf{X} = \mathbf{AG}(\mathbf{C}' \otimes \mathbf{B}') \right)$$

Tucker3 – seeing CP as particular situation

 Tucker3 reduces to Candecomp/Parafac when the core array has a super-diagonal form:

 only interactions between corresponding components are accounted for in CP

Tucker3 – freedom of rotation

PCA's freedom of rotation (motivation)

S nonsingular

$$\mathbf{X} = \mathbf{A}\mathbf{B}'$$
$$= (\mathbf{A}\mathbf{S})(\mathbf{S}^{-1}\mathbf{B}')$$

Tucker3's freedom of rotation

S nonsingular

$$egin{aligned} \mathbf{X} &= \mathbf{AG}(\mathbf{C}' \otimes \mathbf{B}') \ &= (\mathbf{AS})((\mathbf{S})^{-1}\mathbf{G})(\mathbf{C}' \otimes \mathbf{B}') \end{aligned}$$

same applies to B and C

Tucker3 – illustration (Kiers & Van Mechelen (2001))

X=data set of...

- 6 individuals: Anne, Bert, Claus, Dolly, Edna, Frances
- 5 response variables: emotional, sensitive, caring, thorough, accurate
- 4 different situations: doing an exam, giving a speech, family picnic, meeting a new date

Component matrix A				
Individual	Femininity	Masculinity		
Anne	1.0	0.0		
Bert	0.0	1.0		
Claus	0.0	1.0		
Dolly	1.0	0.0		
Edna	0.5	0.5		
Frances	1.0	0.0		

Tucker3 – illustration (Kiers & Van Mechelen (2001))

Component matrix B				
Response	Emotionality	Conscientiousness		
Emotional	1.0	0.0		
Sensitive	1.0	0.0		
Caring	0.6	0.4		
Thorough	0.0	1.0		
Accurate	0.0	1.0		

Component matrix C				
Situation	Performance situations	Social situations		
Doing an exam	1.0	0.0		
Giving a speech	0.8	0.2		
Family picnic	0.0	1.0		
Meeting a new date	0.3	1.2		

Tucker3 – illustration (Kiers & Van Mechelen (2001))

Core array G			
	Performance situations		
	Emotionality	Conscientiousness	
Femininity	0.0	3.0	
Masculinity	0.0	2.0	
	Social situations		
	Emotionality	Conscientiousness	
Femininity	3.0	0.0	
Masculinity	1.0	1.0	

Simplify three-way arrays

Goal

$$\textbf{S},\,\textbf{T},\,\textbf{U}\text{=?:}\qquad \qquad \textbf{H}=\textbf{SX}(\textbf{U}\otimes\textbf{T})$$

- many zero entries = few nonzero entries
- weight of <u>H</u> = # nonzero entries of <u>H</u>

Why?

Statistical reasons:

- ullet Tucker3: simpler core $\underline{\mathbf{G}} \Longrightarrow$ usually simpler interpretation
- constrained Tucker3: distinguish between tautology and non-trivial model

Mathematical reasons:

typical rank, maximal rank

Some examples (I-II)

$$\mathbf{X}$$
 of order $P \times Q \times R$, $P = QR$

Example: \mathbf{X} of order $6 \times 3 \times 2$

$$\underline{\boldsymbol{X}} \, \longrightarrow \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right] = \boldsymbol{X}^{-1}\boldsymbol{X}(\boldsymbol{I}_2 \otimes \boldsymbol{I}_3)$$

Some examples (II-II)

X of order $P \times Q \times R$, P = QR - 1

Murakami, Ten Berge & Kiers (1998)

Example: \mathbf{X} of order $5 \times 3 \times 2$

$$\underline{\mathbf{X}} \longrightarrow \left[\begin{array}{ccc|ccc|c} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \mu_1 & 0 & 0 & 0 & \mu_2 & 0 \end{array} \right]$$

Our goal: simplifying arrays with SYMMETRIC slices

Example: set of correlation matrices over time

Number of symmetric slices:
$$K = 1, ..., \underbrace{\frac{I(I+1)}{2}}_{K_{max}}$$
.

Some results proven

Simplification achieved for:

- $3 \times 3 \times K$ when K = 1, 2, 4, 5, 6
- $4 \times 4 \times K$ when K = 1, 2, 8, 9, 10
- I × I × 1
- $I \times I \times (K_{\text{max}} 1)$
- $I \times I \times K_{max}$

Example: symmetric slice array $3 \times 3 \times 4$

Some results proven

Maximal simplicity

- proved for all 3 × 3 × K presented
- simulations using SIMPLIMAX (Kiers, 1998) seem to confirm maximal simplicity for the targets deduced for 4 × 4 × K (ongoing)

Typical rank

Rules-of-thumb were deduced concerning inspection of typical rank for $3 \times 3 \times K$, $K \neq 3$ (completion of Ten Berge, Sidiropoulos & Rocci, 2004)

• example •3×3×4: rank is 4 iff $\mu_1, \mu_2 > 0$, otherwise is 5

Conclusions, developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups

Developments

- extend results to other orders
- if possible, use procedures to address issues like: maximal simplicity, typical rank

