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Abstract

Checking the validity of test scores is important in both educational and psychological
measurement. Person-fit analysis provides several statistics that help practitioners assess-
ing whether individual item score vectors conform to a prespecified item response theory
model or, alternatively, to a group of test takers. Software enabling easy access to most
person-fit statistics was lacking up to now. The PerFit R package was written in order to
fill in this void. A theoretical overview of relatively simple person-fit statistics is provided.
A practical guide showing how the main functions of PerFit can be used is also given.
Both numerical and graphical tools are described and illustrated using examples. The
goal is to show how person-fit statistics can be easily applied to testing of questionnaire
data.
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1. Introduction
It is well known that total scores or estimated trait values do not always reflect the trait or
proficiency level that a questionnaire or test intends to measure. The answers provided by
test takers or respondents to questionnaires may be biased due to factors unrelated to the
trait of interest. For example, cheating or item-preknowledge may inflate test scores whereas
inattention or guessing may deflate test scores. It is important to be able to detect whether
test scores are invalid, that is, whether test scores are biased and therefore not indicative
of the true latent trait being measured. This fact is acknowledged in several guidelines for
the reporting of test scores (e.g., International Test Commission 2014, Olson and Fremer
2013), and it applies to both educational and psychological measurement. Several person-fit
statistics (PFSs) have been proposed to detect inconsistent, aberrant, or misfitting patterns of
item scores. There are some empirical applications of person-fit analyses in the literature; see
for example Meijer, Egberink, Emons, and Sijtsma (2008), Meijer and Tendeiro (2014), and
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Conijn (2013) for applications in primary education, high-stakes testing, and clinical testing,
respectively. However, some researchers and practitioners find it difficult to implement person-
fit analyses in practice. This might be explained by the mathematical complexity of (some of
the) PFSs and by the lack of software that helps practitioners conducting this type of analysis.
It is our hope that the R (R Core Team 2016) PerFit package (Tendeiro 2016) discussed in this
paper can be helpful to a wide range of practitioners (also, see Meijer, Niessen, and Tendeiro
2016 and Tendeiro and Meijer 2014 for accessible person-fit overviews).
This paper is divided into three main parts. First, we start with a theoretical overview of
person-fit analysis in item response theory (IRT; Embretson and Reise 2000). The exposition
will focus on PFSs that are currently implemented in PerFit. Second, we illustrate how the
main functions of PerFit can be used in practice. Both numerical and graphical tools are
described using empirical data that are also included in the R package. We explain how
inconsistent item score patterns can be detected and we present a statistical tool that may
be used in order to help finding an explanation for the cause of the misfit. Finally, we
will summarize the main points of the paper and discuss further planned extensions for the
package in the future.

2. Person-fit analysis in IRT
In the sequel we refer to persons as test takers, although all procedures also apply to question-
naires data. Moreover, we use θ to denote the trait or proficiency level that the questionnaire
or test is measuring.
Let Xi be the random variable denoting the score on item i (i = 1, . . . , I). The observed score
of test taker n (n = 1, . . . , N) on item i, that is, a realization of random variable Xi, will be
denoted by xni. Items are dichotomous when there are m = 2 possible score categories or
polytomous when there are three or more score categories (m ≥ 3). In IRT it is assumed that
θ induces the item responses. It is also assumed that the ordering of the item score categories
reflects the hypothesized ordering on θ. The following item scores coding is used: 0, 1 for
dichotomous items (e.g., 0 = incorrect, 1 = correct) and 0, 1, . . . , (m − 1) for polytomous
items (e.g., 0 = disagree, 1 = neutral, 2 = agree). It is important that all items are keyed in
the same direction, especially if the total score (or some measure based on the total score) is
used.
An item score vector (or pattern) and its associated total score will be denoted by xn =
(xn1, xn2, . . . , xnI) and sn = ∑I

i=1 xni, respectively. The goal of person-fit analysis is to
detect whether an individual item score pattern xn (n = 1, . . . , N) is unusual or unexpected
given the item score patterns in a group of test takers (group-based analysis) or, alternatively,
given a prespecified IRT model (model-based analysis). For comprehensive overview studies
for both types of approaches we refer to Meijer and Sijtsma (2001) and Karabatsos (2003).
Most of the PFSs currently available in PerFit are group-based. The exceptions are the log-
likelihood statistics introduced by Drasgow, Levine, and Williams (1985) and improved by
Snijders (2001). In what follows we will focus on the PFSs and related functions that are
available in PerFit (also, see Tendeiro and Meijer 2014).

2.1. IRT models

It is important to clarify what type of IRT model assumptions should be verified before
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person-fit analyses can be conducted. Typically, a functional relationship between θ and the
probability of answering at or above a specific score category is conceptualized in IRT. This
function is known as the item response function (IRF) in the dichotomous case or item step
response function (ISRF) in the polytomous case and it is denoted as Pih(θ) = P(Xi ≥ h|θ)
for i = 1, . . . , I and h = 1, . . . ,m − 1. We will use the acronym ‘IRF’ to refer to function
Pih(θ) in either the dichotomous or the polytomous case. For dichotomous items there is only
one IRF (Pi(θ) = P(Xi = 1|θ)) whereas for polytomous items there are (m−1) IRFs (observe
that Pi0(θ) ≡ 1).
Strictly speaking, group-based PFSs do not require closed-form mathematical IRFs to be es-
timated. Hence, nonparametric IRT models (NIRT; Sijtsma and Molenaar 2002) can be used.
In NIRT the following model assumptions are typically imposed: (1) Unidimensionality: All
items in the test predominantly measure the same latent trait, θ. (2) Local independence:
Answers to different items are statistically independent conditional on θ. (3) Latent mono-
tonicity of the IRFs: Each IRF is monotonically nondecreasing in θ. The NIRT model that
satisfies assumptions 1 through 3 is known as the monotone homogeneity model (MHM;
Mokken 1971), which is the most general nonparametric model. The double monotonicity
model (DMM; Mokken 1971) further imposes the assumption that the IRFs of different items
do not intersect. This assumption is known as the invariant item ordering (IIO) assumption.
There are several tutorials available to aid practitioners interested in fitting these types of
models to empirical data; see for example Sijtsma and Molenaar (2002) and Meijer, Tendeiro,
and Wanders (2015). The R mokken package (Van der Ark 2007, 2012) can be used to check
these assumptions in practice.
Both the MHM and the DMM are parameter-free, both in terms of person and of item
parameters. Instead of estimating θs, the MHM (and therefore the DMM) relies on the
total score statistic and on the property of stochastic ordering of the latent trait (SOL;
Hemker, Sijtsma, Molenaar, and Junker 1997). The SOL property states that test takers
are stochastically ordered on θ by means of the total score statistic. This ordering holds for
dichotomous items and, for most practical purposes, also for polytomous items (however, see
Van der Ark 2005). Also, instead of estimating item difficulty parameters, one uses the so-
called item-step difficulties. An item-step difficulty πih is the population proportion of persons
who answer at or above score category h for item i. This parameter is usually estimated by
means of the corresponding sample proportion in the dataset. The item-step difficulty of
a dichotomous item is the proportion of persons with score 1 and is also referred to as the
item’s proportion-correct score (denoted as πi). Without loss of generality, and unless stated
otherwise, in what follows it is assumed that the item steps are ordered in increasing order
of difficulty, that is, in decreasing order of item-step difficulty. In particular for dichotomous
items, this means that items are labeled in increasing order of difficulty (i.e., item 1 being the
easiest and item I the most difficult). This property is especially useful when IIO is met (thus
for the DMM) because it implies that the same ordering of item-step difficulties holds at any θ
level. Nearly all group-based PFSs that are available in PerFit involve computations based on
item/total scores and item-step difficulties (proportion-correct scores for dichotomous items).
Parametric IRT models (PIRT) are also often used to describe data (e.g., Embretson and
Reise 2000). In this case closed-form mathematical functions for the IRFs are chosen, usually
based on the logistic function. These functions are defined in terms of both person parameters
(θs) and item parameters (their number and nature depend on the model of choice), which
need to be estimated. There are several software packages available that allow fitting PIRT
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Test taker A 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0
Test taker B 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0
Test taker C 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0
Test taker D 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1

Table 1: Item score patterns corresponding to the PRFs displayed in Figure 1. Items are in
increasing order of difficulty.

models to data. Within R some useful packages are eRm (Mair and Hatzinger 2007), irtoys
(Partchev 2016), ltm (Rizopoulos 2006), mcIRT (Reif 2014), and TAM (Kiefer, Robitzsch, and
Wu 2016). The quality of the fit of the model to the data requires analyzing the discrepancy
between the observed item scores and the values expected under the PIRT model of interest
(e.g., Maydeu-Olivares 2015). Several goodness of fit statistics are implemented in R, such as
Pearson’s χ2 and the likelihood-ratio statistics (see packages eRm, irtoys, and ltm).
Practitioners are advised to analyze the fit of the IRT model to real data before attempting
to interpret the validity of individual item response patterns.

2.2. Rationale behind person-fit

A typical test taker, when given a set of dichotomous items, is expected to answer very easy
items correctly and very difficult items incorrectly. The more difficult the item, the lower the
probability of answering the item correctly. This is the general principle behind the so-called
person response function (PRF), which relates item difficulty with the probability of correctly
answering an item. PerFit allows computing PRF plots; we will discuss this function at more
length in Section 3.2. As an example, Figure 1 shows nonparametric PRFs (Emons, Sijtsma,
and Meijer 2004; Sijtsma and Meijer 2001) for four different test takers that were estimated
based on the answers of 1000 test takers on 26 dichotomous items (dataset IntelligenceData
in PerFit). The x-axes display the item difficulty in terms of the values (1− πi), thus values
close to zero concern easier items and values close to one concern more difficult items.
The top-left panel shows the PRF of a typical test taker: The probability of answering an
item correctly decreases as the item difficulty increases. The plots in the remaining panels of
Figure 1 display deviations to the expected behavior. For example, the probability that test
taker B answers an item correctly seems to increase with item difficulty in the interval (0, .5).
The PRF for test taker C increases in the interval (.6, .8). Test taker D seems to be the most
atypical of the four shown here: The PRF has mostly an increasing trend.
Table 1 shows the item scores of test takers A, B, C, and D, where the items (columns) are
rearranged in increasing order of difficulty. Note that test takers B and D incorrectly answered
several easy items. This fact helps explaining the increasing trend in the corresponding PRFs
for low item difficulty values. Test taker C, on the other hand, answered 6 out of the 7
most difficult items correctly whereas several easier items were incorrectly answered. The
corresponding PRF in Figure 1 does reflect this in terms of a local increasing trend for
relatively difficult items.
Person-fit analysis can be used to detect test takers in a sample that display some kind
of atypical response behavior as shown in the examples above. It should be observed that
there are many psychological processes that may trigger atypical responses to a test or ques-
tionnaire. Some examples include cheating, guessing, plodding, alignment errors, extremely
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Figure 1: Person response functions of four test takers in dataset IntelligenceData from
package PerFit.

creative interpretation of items, and deficient preparation in specific subparts of the contents
being evaluated (Meijer 1996). It is possible that different psychological processes lead to
similar atypical item score patterns, thus the interpretation of person-fit results is often not
easy. As a general rule, person-fit analyses typically do not provide conclusive evidence as
to exactly which abnormal phenomenon caused a strange item score pattern. Practitioners
should complement and possibly follow up the analysis using other available tools, such as
interviews with test takers (see Meijer et al. 2008) or relating the values of PFSs with other
variables (Conijn 2013).

2.3. Person-fit statistics

Many PFSs (also referred to as appropriateness indices; Levine and Drasgow 1983) have
been proposed in the literature. Karabatsos (2003) and Meijer and Sijtsma (2001) (see also
Tendeiro and Meijer 2014 for an overview focusing on group-based statistics) discuss the most
relevant statistics. In this paper we briefly describe each PFS that is implemented in PerFit.
Through PerFit (version 1.4) 18 PFSs can be calculated. Table 2 displays a summary of what
the package offers.
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Nonparametric IRT model
PFS PerFit function Literature reference Item type Dist. tail
r.pbis r.pbis Donlon and Fischer (1968) D Lower
C C.Sato Sato (1975) D Upper
G, Gn G, Gnormed Van der Flier (1977), Meijer (1994) D Upper
A, E A.KB, E.KB Kane and Brennan (1980) D Lower
D D.KB Kane and Brennan (1980) D Upper
U3, ZU3 U3, ZU3 Van der Flier (1982) D Upper
C∗ Cstar Harnisch and Linn (1981) D Upper
NCI NCI Tatsuoka and Tatsuoka (1982,1983) D Lower
Ht Ht Sijtsma (1986), D Lower

Sijtsma and Meijer (1992)
Gp Gpoly Molenaar (1991), Emons (2008) P Upper
Gp

n Gnormed.poly Molenaar (1991), Emons (2008) P Upper
U3p U3poly Emons (2008) P Upper

Parametric IRT model
PFS PerFit function Literature reference Item type Dist. tail
lz lz Drasgow et al. (1985) D Lower
lpz lzpoly Drasgow et al. (1985) P Lower
l∗z lzstar Snijders (2001) D Lower

Table 2: Person-fit statistics included in PerFit (version 1.4). D = Dichotomous, P = Poly-
tomous, Dist. tail = Distribution tail.

Likelihood-based PFSs
In the dichotomous case the log-likelihood of item score pattern xn is given by

logL(θn) =
I∑

i=1
xni ln Pi(θn) + (1− xni) ln[1− Pi(θn)], (1)

where Pi is typically the 1-, 2-, or the 3-parameter logistic model (1PLM, 2PLM, or 3PLM,
respectively; Embretson and Reise 2000). Equation 1 is readibly extendable to the polytomous
case by using the score category probabilities P̃ih(θ) = Pih−Pi(h+1) for h = 0, . . . ,m−1 with
an associated indicator variable δih (1 if the corresponding score category h was chosen, 0
otherwise):

logL(θn) =
I∑

i=1

m−1∑
h=0

δih ln P̃ih(θn). (2)

Levine and Rubin (1979) proposed to use Equation 1 as a PFS denoted by l0. Low l0 values
indicate misfitting item score patterns. However, the l0 statistic has some limitations because
it is not standardized nor is its distribution under a fitting IRT model known. Drasgow et al.
(1985) proposed a standardized normal version of l0 denoted as lz (lpz in the polytomous
case). Values of lz are interpreted similarly as l0, that is, the smaller the (negative) lz values
the stronger the indication of misfit. Statistic lz is asymptotically (in terms of the number
of items I) standard normally distributed. However, this approximation only holds when
true θ values are used (Molenaar and Hoijtink 1990), which is an unrealistic requirement in
practice. When estimated θ parameters replace θ in Equation 1 then it has been shown that
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the variance of lz is reduced (Meijer and Tendeiro 2012, Molenaar and Hoijtink 1990, Nering
1995, 1997, Reise 1995). Snijders (2001) proposed a corrected statistic known as l∗z which
takes the sampling variability of the estimated θ parameters into account. Magis, Raîche,
and Béland (2012) thoroughly explained the computational formulas of l∗z .

Group-based PFSs

Group-based or nonparametric PFSs are not constrained to fitting closed-form mathematical
models to the data (although the unidimensionality, local independence, and monotonicity
assumptions previously mentioned need still be checked; see Sijtsma and Molenaar 2002).
More specifically, an item score pattern is flagged as misfitting in case it deviates to a large
extent from the most typical response behavior in the sample. Group-based PFSs are usually
computed using the item-step difficulties in the polytomous case (which are simply equal to
the proportion-correct scores in the dichotomous case).
Donlon and Fischer (1968) considered the personal point-biserial correlations. r.pbis is the
correlation between the test taker’s item score pattern xn and the vector of item proportion-
correct scores in the sample p = (p1, . . . , pI). The pi score, also known as the difficulty or
p-value of item i (i = 1, . . . , I), is the proportion of persons who answered item i correctly.
Low values of r.pbis may be indicative of misfit of the response vector.
Sato (1975) proposed the PFS C, which is a covariance ratio measuring the extent to which
an item score pattern deviates from the perfect pattern (Guttman pattern). Assume that the
items are ordered in increasing order of difficulty, that is, p1 ≥ p2 ≥ · · · ≥ pI , without loss of
generality. The formula for C is

C = 1− COV(xn,p)
COV(x∗n,p) , (3)

where x∗n is the so-called Guttman vector containing correct answers for the sn easiest items
(i.e., with the largest p-values) only. C is zero for Guttman vectors and its value increases
(without theoretical bound) for item score patterns that deviate more from the perfect
Guttman pattern, thus higher values indicate more deviant response behavior. Harnisch
and Linn (1981) further adapted C by norming it between 0 and 1:

C∗ = COV(x∗n,p)− COV(xn,p)
COV(x∗n,p)− COV(x′n,p) , (4)

where x′n is the reversed Guttman vector containing correct answers for the sn hardest items
(i.e., with the smallest p-values) only. C∗ is sensitive to the so-called Guttman errors. A
Guttman error is a pair of scores (0, 1), where the 0-score pertains to the easiest item and
the 1-score pertains to the hardest item. C∗ ranges between 0 (perfect Guttman vector) and
1 (reversed Guttman vector).
The U3 statistic (Van der Flier 1982) is similar to C∗ except that it is based on the log-odds
of the item proportion-correct scores. It is given by

U3 = f(x∗n)− f(xn)
f(x∗n)− f(x′n) , (5)

where f(xn) denotes the summation ∑I
i=1 xni log[pi/(1− pi)]. A standardized normal version

(statistic ZU3) was also developed (see Van der Flier 1982). However, the adequacy of this
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asymptotic approximation has been questioned by some researchers (e.g., Emons, Meijer, and
Sijtsma 2002).
Kane and Brennan (1980) introduced the agreement (A), disagreement (D), and dependability
(E) statistics, which assess the similarity (A and E) and dissimilarity (D) between the vectors
xn and p. The formulas are

A =
I∑

i=1
xnipi, D = max(A|sn)−A, and E = A

max(A|sn) , (6)

where max(A|sn) equals the sum of the sn largest pi scores. Small values of A and E (i.e.,
in the left tail of the sampling distribution) are potentially indicative of aberrant response
behavior, whereas large values of D (i.e., in the right tail of the sampling distribution) are
potentially indicative of aberrant response behavior.
Sijtsma (1986; see also Sijtsma and Meijer 1992) proposed the Ht statistic, which is based on
an idea presented in Mokken (1971). Sijtsma observed that Mokken had already introduced
an index Hi that allowed assessing the scalability of an item to the Guttman model (Guttman
1944, 1950). Sijtsma (1986) used the same index applied to the transposed data in order to
detect test takers that would not comply with the Guttman model. Assume, without loss of
generality, that the rows of the data matrix are ordered to increasing order of total score sn

(n = 1, . . . , N). The Ht statistic is given by

Ht =
∑

n6=m(tnm − tntm)∑
n>m(tm − tntm) + ∑

n<m(tn − tntm) , (7)

with tn = sn/I, tm = sm/I, and tnm is the proportion of items answered correctly by both
test takers n and m (Sijtsma and Molenaar 2002, p. 57). Ht takes its maximum value 1
when tnm = tn (n < m) and tnm = tm (n > m). This means that no test taker with a total
score smaller/larger than tn can answer an item correctly/incorrectly that test taker n has
answered incorrectly/correctly, respectively. Ht equals zero when the average covariance of
the response pattern of test taker n with the other response patterns equals zero.
Van der Flier (1980; see also Meijer 1994; Tatsuoka and Tatsuoka 1982) proposed the number
of Guttman errors as a PFS, here denoted G. Thus, G is the number of (0, 1) pairs of
item scores in the item score vector with the incorrect answer given to the easiest item and
the correct answer given to the most difficult item. G is an integer and its upper bound
is a function of the test length, which is inconvenient. As a result, this statistic has been
normalized, leading to statistic Gn. The normalization is done against the maximum number
of possible Guttman errors given the test taker’s total score sn (which is sn(I − sn) in the
dichotomous case). The norm conformity index (NCI ) defined by Tatsuoka and Tatsuoka
(1983) is perfectly linearly related to G (NCI = 1− 2Gn).
A version of the U3 statistic adapted to polytomous items was proposed by Emons (2008).
This statistic relies on the concept of item steps (Molenaar 1982). Assume that all items
have the same number m of ordered score categories. A test taker may take step h (h =
1, . . . ,m−1), from score category (h−1) to h, only if all previous steps were taken. The goal
is to associate the test taker’s latent ability with the probability of taking each item step.
Define πih as the difficulty of item step h on item i, consisting of the population proportion of
test takers with a score on item i at least equal to h. The item step difficulties of all items can
be estimated in a sample and ranked in decreasing order (i.e., in increasing order of item-step
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difficulty), so that π̂1 ≥ π̂2 ≥ · · · ≥ π̂I(m−1). Item-step scores of a test taker (1 if a step is
taken, 0 otherwise) are collected in an I(m − 1) vector y = (y1, y2, . . . , yI(m−1)). The U3p

statistic (Emons 2008) is defined by

U3p =
∑X+

k=1 logit(π̂k)−W (y)∑X+
k=1 logit(π̂k)−min(W |X+)

, (8)

with W (y) = ∑I(m−1)
k=1 yk logit(π̂k) and X+ = ∑I(m−1)

k=1 yk. The value min(W |X+) cannot be
written in closed form; its value can be found by means of a recursive algorithm (Emons
2008).
Extensions of the Guttman-based dichotomous statistics to polytomous items are also avail-
able in the package. Using the same notation introduced in the previous, statistic Gp is
defined by

Gp =
I(m−1)∑

l<k

yk(1− yl) (9)

and the normed polytomous version is

Gp
n = Gp

max(Gp|X+) . (10)

In this case also the value max(Gp|X+) needs to be computed by means of a recursive algo-
rithm (Emons 2008).

2.4. Comparative performance of PFSs

Given the wealth of PFSs available to practitioners, it is important to know which statistics
outperform others, that is, which statistics have the highest power to detect aberrant response
behavior while keeping the false positive rates under control. Assessing the performance of
competing statistical strategies is traditionally done by means of simulation studies, and in
rare cases using empirical data. Results from several studies are indeed available (Birenbaum
1985, 1986; Drasgow, Levine, and McLaughlin 1987; Harnisch and Linn 1981; Harnisch and
Tatsuoka 1983; Karabatsos 2003; Kogut 1987; Li and Olejnik 1997; Meijer 1994; Meijer,
Muijtjens, and van der Vleuten 1996; Nering and Meijer 1998; Noonan, Boss, and Gessaroli
1992; Rogers and Hattie 1987; Rudner 1983; Tendeiro and Meijer 2014). Findings may vary
according to the design of the simulation study (see Rupp 2013) and which PFSs were used
in the study. However, a tentative general conclusion is that simple group-based PFSs like
Ht and U3 do not perform worse, and in some cases perform better, than most model-based
PFSs across different types of datasets (Karabatsos 2003; Tendeiro and Meijer 2014). This
is good news for practitioners in the sense that (1) group-based PFSs are typically easier to
compute, and (2) nonparametric measurement models are less restrictive to empirical data
than parametric logistic IRT models (Sijtsma and Molenaar 2002).

2.5. Current software available

From the overview given above it is clear that there are many PFSs available that can be
used to assess the validity of a test taker’s test score. One of the most serious limitations
of PFSs, however, is their implementation in practice. The relatively advanced statistical
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knowledge required to apply person-fit techniques in educational and psychological assessment
and the lack of accessible software withholds substantive researchers and practitioners from
using person-fit analyses with their own data. The few existing options available (WPERFIT,
Ferrando and Lorenzo 2000; PERSONz, Choi 2010) do not offer group-based PFSs which were
shown to perform very well in several simulation studies. Some PFSs are already available
in R, such as lz (see packages irtoys; ltm; mirt, Chalmers 2012; and sirt, Robitzsch 2016)
and the Rasch model-based outfit and infit statistics (Wright and Masters 1990; see packages
eRm, mirt, and sirt). Only the sirt package currently offers some group-based PFSs (C∗,
D, r.pbis, and U3). PerFit offers a broader set of PFSs, both model- and group-based. In
particular, PerFit includes Ht which has been shown to outperform most PFSs in several
simulation studies (Karabatsos 2003; Tendeiro and Meijer 2014), l∗z as an updated version of
the commonly used lz statistic, and several PFSs suited to polytomously scored data.
Moreover, the ability to estimate PRFs that reflect observed deviations of individual response
vector patterns with respect to the test takers group trend is of great value, as discussed
in Section 2.2. Package irtProb (Raîche 2014) already allows plotting person characteristic
curves, which are expected curves under parametric IRT models. We propose a graphical tool
(function PRFplot()) that relies on observed item scores to better interpret person misfit,
based on a nonparametric approach.
In combination with the other R packages already mentioned, PerFit is deemed as a major
contribution to users relying on only one computing platform in order to conduct their data
analyses.

3. Using the PerFit package

3.1. Computing PFSs

Package PerFit is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=PerFit and can be installed from there using:

R> install.packages("PerFit")

The PFSs available in PerFit are listed in Table 2. Depending on the PFS, N × I matrices
with scores 0, 1 (in the dichotomous case) or scores 0, 1, . . . ,m− 1 (in the polytomous case)
need to be loaded in R. The number of score options is required to be the same for all
items. Missing values are allowed. The package includes three datasets by default. The
InadequacyData (N = 806, I = 28) and the IntelligenceData (N = 1000, I = 26) datasets
consist of dichotomously scored items whereas PhysFuncData (N = 714, I = 10) consists of
polytomously scored items (each with three item categories).
Typically, to use a PFS function one may only provide the data matrix (argument matrix).
For example, to compute the Ht values for dataset IntelligenceData, run the following
code:

R> library("PerFit")
R> data("IntelligenceData", package = "PerFit")
R> Ht("IntelligenceData")

https://CRAN.R-project.org/package=PerFit
https://CRAN.R-project.org/package=PerFit
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Function Ht has more arguments but all have predefined defaults. In general, the arguments
for dichotomous PFS functions are

(matrix,
NA.method = "Pairwise", Save.MatImp = FALSE,
IP = NULL, IRT.PModel = "2PL", Ability = NULL, Ability.PModel = "ML",
mu = 0, sigma = 1)

and the arguments for polytomous PFS functions are

(matrix, Ncat,
NA.method = "Pairwise", Save.MatImp = FALSE,
IP = NULL, IRT.PModel = "GRM", Ability = NULL, Ability.PModel = "EAP")

The default approach to dealing with missing values is pairwise deletion (i.e., NA.method =
"Pairwise"). This procedure is adequate under the missing completely at random (MCAR)
mechanism, and Zhang and Walker (2008) showed that the pairwise deletion method per-
formed well under MCAR. Alternatively, three imputation methods are also available (see
Zhang and Walker 2008 for an overview of these and related methods):

• NA.method = "Hotdeck": Hotdeck imputation replaces missing responses of a test taker
(‘recipient’) by item scores from the test taker which is closest to the recipient (‘donor’),
based on the recipient’s nonmissing item scores. The similarity between nonmissing item
scores of recipients and donors is based on the sum of absolute differences between the
corresponding item scores. The donor’s response pattern is deemed to be the most
similar to the recipient’s response pattern in the group, so item scores of the former are
used to replace the corresponding missing values of the latter. When multiple donors
are equidistant to a recipient, one donor is randomly drawn from the set of all donors.

• NA.method = "NPModel" (default): The nonparametric model imputation method is
similar to the hotdeck imputation, but item scores are generated from Bernoulli dis-
tributions (for dichotomous items) or multinomial distributions (for polytomous items)
with probabilities defined by donors with similar total score than the recipient (based
on all items except the NAs).

• NA.method = "PModel": The parametric model imputation method is similar to the
hotdeck imputation, but item scores are generated from Bernoulli distributions (for di-
chotomous items) or multinomial distributions (for polytomous items) with probabilities
estimated by means of parametric IRT models (see below).

The user may choose to save the imputed data matrix to a file (Save.MatImp = TRUE).
A word of caution concerning missing values is in order here. When the proportion of missing
values is small and follows the MCAR mechanism, the missing values procedures available
within PerFit are probably well suited for most practical purposes. But in case more elaborate
schemes to tackle missing values are required (e.g., by means of multiple imputation or max-
imum likelihood estimation) then users are advised to resort to specialized R packages (e.g.,
Amelia, Honaker, King, and Blackwell 2011; mi, Su, Gelman, Hill, and Yajima 2011; Miss-
ingDataGUI, Cheng, Cook, and Hofmann 2016). However, when the proportion of missing
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values is large, both strategies (pairwise deletion and imputation) are not to be recommended
because they may lead to biased person-fit results. For large proportions of missing values it
is probably better not to calculate a person-fit statistic. Therefore, we strongly advice the
user to first inspect the proportion of missing values for each test taker and then to decide, on
the basis of these results, what the best strategy may be. One may even conceive considering
both options and then to compare results.
The estimation of parametric item and ability parameters for group-based PFSs is only re-
quired if the parametric model imputation method is chosen. For all likelihood-based PFSs
in PerFit, the model parameters need to be either provided (arguments IP and Ability)
or internally estimated by the function. As an example, the following code shows how item
parameters estimated using package mirt can be provided to compute the lz statistic:

R> library("mirt")
R> mod <- mirt(IntelligenceData, 1)
R> ip.mirt <- coef(mod, IRTpars = TRUE, simplify = TRUE, digits = Inf)$
+ items[, c("a", "b", "g")]
R> lz.out <- lz(IntelligenceData, IP = ip.mirt)

The default for dichotomous data is based on fitting the 2PLM to the data using func-
tions available from the irtoys package (IRT.PModel = "2PL"). Ability parameters are by
default estimated via maximum likelihood (Ability.PModel = "ML"). Alternatively, other
dichotomous IRT models that can be used to describe the data are the 1PLM (IRT.PModel
= "1PL") and the 3PLM (IRT.PModel = "3PL"), whereas the ability parameters may also
be estimated by means of Bayes modal estimation (Ability.PModel = "BM") or weighted
likelihood estimation (method = "WL"). For polytomous data the defaults are the graded
response model (IRT.PModel = "GRM") with expected a posteriori estimates of ability pa-
rameters (Ability.PModel = "EAP"). Other model options for polytomous data include
the partial credit model (IRT.PModel = "PCM") and the generalized partial credit model
(IRT.PModel = "GPCM"), whereas estimation of ability parameters may be performed by
means of empirical Bayes estimation (Ability.PModel = "EB") or multiple imputation esti-
mation (Ability.PModel = "MI").
The output from a PFS function is an object of class ‘PerFit’, which consists of a list with
12 elements:

1. PFscores: A list of length N with the values of the PFS.

2. PFStatistic: The PFS used.

3. PerfVects: A message indicating whether perfect response vectors (all-0s or all-1s)
were removed from the analysis. Perfect response vectors need to be removed for some
dichotomous-based PFSs.

4. ID.all0s: Row indices of all-0s response vectors removed from the analysis (if applica-
ble).

5. ID.all1s: Row indices of all-1s response vectors removed from the analysis (if applica-
ble).
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6. matrix: The data matrix after missing values imputation (if applicable; otherwise it is
the original data matrix).

7. Ncat: The number of response categories.

8. IRT.PModel: The parametric IRT model used in case NA.method = "PModel", other-
wise NULL.

9. IP: The matrix of item parameters in case NA.method = "PModel", otherwise NULL.

10. Ability.PModel: The method used to estimate abilities in case NA.method = "PModel",
otherwise NULL.

11. Ability: The vector of N ability parameters in case NA.method = "PModel", otherwise
NULL.

12. NAs.method: The method used to deal with missing values.

For polytomous PFSs (Gpoly, Gnormed.poly, lzpoly, and U3poly) the number of score
categories is set using the argument Ncat. For example, using the PhysFuncData dataset:

R> data("PhysFuncData", package = "PerFit")
R> U3poly.out <- U3poly(PhysFuncData, Ncat = 3)
R> U3poly.out$PFscores

PFscores
Resp.1 0.2633
Resp.2 0.0776
Resp.3 0.3437
...
Resp.713 0.0000
Resp.714 0.0000

Based on the same data, next is an example using the lzpoly statistic where the item param-
eters for the graded response model were estimated previously and used later in the function:

R> library("ltm")
R> IP.est <- coef(grm(PhysFuncData, constrained = FALSE, IRT.param = TRUE))
R> lzpoly.out <- lzpoly(PhysFuncData, Ncat = 3, IP = IP.est)
R> lzpoly.out$PFscores

PFscores
Resp.1 -1.1397
Resp.2 -0.5307
Resp.3 -0.8348
...
Resp.713 0.3991
Resp.714 0.5972
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3.2. Extra functions

Aside from the PFSs currently included in the package there are more functions available,
namely: PerFit.PFS, PerFit.SE, cutoff, flagged.resp, the print, summary, and plot
methods in PerFit, and PRFplot.

The PerFit.PFS function

PerFit.PFS(matrix, method = NULL, simplified = TRUE, NA.method = "Pairwise",
Save.MatImp = FALSE, IP = NULL, IRT.PModel = NULL, Ability = NULL,
Ability.PModel = NULL, mu = 0, sigma = 1)

Function PerFit.PFS is a wrapper allowing to compute more than one person-fit statistic
simultaneously. A vector of several PFSs may be provided to argument method. If simplified
= TRUE, an N × k data frame is returned, where N is the number of test takers and k is the
number of PFS methods. If simplified = FALSE a list of k ‘PerFit’ objects is returned.

R> PFS.out <- PerFit.PFS(IntelligenceData, method = c("U3", "lzstar", "Ht"),
+ simplified = TRUE)
R> PFS.out

U3 lzstar Ht
1 0.2406 -1.1838 0.2794
2 0.1131 0.4650 0.4356
3 0.2076 -0.2973 0.4352
4 0.1381 0.2051 0.3969
5 0.1739 -0.0106 0.4451
6 0.1230 0.1905 0.4463
...

The PerFit.SE function

PerFit.SE(x)

Function PerFit.SE computes jackknife standard errors for the scores of the person-fit statis-
tic in object x. The process consists of computing the PFS for each dataset omitting the ith
item (i = 1, . . . , I), followed by the computation of the jackknife standard deviation of the I
values of the PFS, for each test taker in the dataset.
The output is a matrix with two columns: PFscores shows the values of the person-fit statistic
and PFscores.SE shows the estimated standard errors. For example, the standard errors of
the Ht values computed from the intelligence data can be found as follows:

R> Ht.out <- Ht(IntelligenceData)
R> Ht.SE <- PerFit.SE(Ht.out)
R> Ht.SE
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PFscores PFscores.SE
[1,] 0.2794 0.1436
[2,] 0.4356 0.1081
[3,] 0.4352 0.2023
[4,] 0.3969 0.1144
[5,] 0.4451 0.1579
[6,] 0.4463 0.1179
...

The cutoff function

cutoff(x, ModelFit = "NonParametric", Nreps = 1000, IP = x$IP, IRT.PModel =
x$IRT.PModel, Ability = x$Ability, Ability.PModel = x$Ability.PModel,
mu = 0, sigma = 1, Blvl = 0.05, Breps = 1000, CIlvl = 0.95, UDlvl = NA)

This function allows estimating a cutoff value at a prespecified level. PFS values in the
sample at or more extreme than the cutoff value lead to flagging the corresponding item score
vectors as misfitting. The direction according to which a value may be considered extreme
(i.e., larger than/smaller than the cutoff) varies. The last column in Table 2 shows which tail
of the distribution indicates misfit. The cutoff function routinely reports which tail of the
PFS distribution is used (Tail = "lower" or Tail = "upper").
The procedure consists of generating Nreps model-fitting item score vectors based on paramet-
ric models (ModelFit = "Parametric") or on sample proportions of test takers per answer
category (ModelFit = "NonParametric"). The item parameters (either parametric or non-
parametric) are estimated from the original data matrix. The Nreps ability parameters (under
the parametric approach) or total scores (under the nonparametric approach) are randomly
sampled with replacement from the set of N ability parameters or total scores in the sample,
respectively. The probability of each simulee endorsing each answer option is then estimated
under each modeling framework. Next, item scores are randomly generated by means of the
multinomial distribution. Finally, Nreps values of the PFS corresponding to model-fitting
item response patterns are computed.
A bootstrap procedure is then used to approximate the sampling distribution of the quantile
of level Blvl (resp., 1 - Blvl) for “lower” (resp. “upper”) types of PFS, based on Breps
resamples. The cutoff (and its standard error) is given by the median (standard deviation) of
this bootstrap distribution. A bootstrap percentile confidence interval of level CIlvl is also
reported.
The cutoff may alternatively be manually entered by the user (e.g., when it is available from
prior data calibration) by means of UDlvl. The goal is then to compute the proportion of test
takers in the sample that are flagged by means of this cutoff value. In this case the bootstrap
standard error and confidence intervals are not reported.
The cutoff function should be used on objects of class ‘PerFit’. For example, the cutoff
of the Ht values computed from the intelligence data based on a nominal 10% error rate is
found as follows:

R> set.seed(123)
R> cutoff(Ht.out, Blvl = 0.10)
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$Cutoff
[1] 0.3054

$Cutoff.SE
[1] 0.0063

$Prop.flagged
[1] 0.141

$Tail
[1] "lower"

$Cutoff.CI
2.5% 97.5%

0.2956 0.3216

attr(,"class")
[1] "PerFit.cutoff"

The seed was fixed in the command above for replicability, since the estimation of the cutoff
value may vary between runs due to the resampling procedure.
The output is an object of class ‘PerFit.cutoff’, consisting of a list with five elements: The
cutoff value ($Cutoff), the associated standard error ($Cutoff.SE), the proportion of item
score vectors in the sample that will be flagged by means of this cutoff ($Prop.flagged), which
tail of the distribution is relevant ($Tail), and the CIlvl% confidence interval ($Cutoff.CI).

The flagged.resp function

flagged.resp(x, cutoff.obj = NULL, scores = TRUE, ord = TRUE, ModelFit =
"NonParametric", Nreps = 1000, IP = x$IP, IRT.PModel = x$IRT.PModel,
Ability = x$Ability, Ability.PModel = x$Ability.PModel, mu = 0, sigma = 1,
Blvl = 0.05, Breps = 1000, CIlvl = 0.95, UDlvl = NA)

This function finds which test takers in the sample are flagged by a PFS, based on a cutoff
value. The PFS is specified by means of the ‘PerFit’ object x. The cutoff (i.e., an object
of class ‘PerFit.cutoff’) may be provided using the argument cutoff.obj. If no cutoff is
provided then it will be internally computed, for which the function parameters ModelFit
through UDlvl are required (see function cutoff above). If scores = TRUE then the test
takers’ item scores will be shown in the output, either in the original item order (ord =
FALSE) or in increasing difficulty order determined by decreasing proportion-correct values
(ord = TRUE). The latter option is useful for interpretation as we explained in Section 2.2.
Table 1 (page 4) shows four item score vectors from the intelligence data (test takers A, B, C,
and D correspond to rows 6, 584, 832, and 772, respectively), with items ordered in increasing
order of difficulty (ord = TRUE). The last three item score vectors were detected by U3 using
a cutoff at a 1% nominal level, as shown below.
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R> U3.out <- U3(IntelligenceData)
R> set.seed(72)
R> U3.cutoff <- cutoff(U3.out, Blvl = .01)
R> flagged.resp(U3.out, cutoff.obj = U3.cutoff, ord = TRUE)

$Scores
FlaggedID It8 It10 It7 It14 It4 It9 It11 It16 It6 It1 It20 It23 It17

[1,] 278 1 1 0 1 1 0 1 0 0 1 1 1 1
[2,] 478 1 1 1 1 1 1 1 1 1 1 1 1 0
[3,] 479 0 1 0 1 1 1 1 1 1 0 1 1 1
[4,] 486 1 1 1 1 1 1 1 1 0 1 1 1 1
[5,] 558 1 1 1 1 0 1 1 1 1 1 1 1 1
[6,] 584 0 0 0 0 1 1 0 0 1 0 0 1 1
[7,] 588 0 1 1 0 1 1 0 1 0 1 1 1 1
[8,] 606 0 1 1 1 1 1 1 1 1 1 1 1 1
[9,] 731 1 1 1 1 0 0 1 1 1 1 1 1 1

[10,] 772 0 0 1 0 0 1 0 1 0 0 0 0 1
[11,] 832 1 1 1 1 1 0 1 0 1 1 1 0 0
[12,] 971 0 1 1 0 1 1 0 1 0 0 1 1 1
[13,] 990 1 1 0 0 1 0 1 1 1 1 0 0 1

It13 It3 It12 It2 It18 It25 It5 It15 It22 It21 It24 It19 It26 PFscores
[1,] 0 1 0 1 1 1 0 1 1 1 0 0 1 0.5069
[2,] 1 1 1 1 1 1 0 1 1 1 1 1 1 0.5304
[3,] 0 0 0 0 0 1 0 0 1 0 1 0 1 0.4155
[4,] 1 1 1 1 1 1 1 1 0 0 1 1 1 0.4034
[5,] 1 0 1 1 1 1 0 1 1 1 1 1 1 0.6387
[6,] 0 1 0 0 0 0 0 1 0 0 1 0 0 0.4608
[7,] 0 1 0 0 1 0 0 0 1 1 1 1 0 0.4547
[8,] 1 1 1 1 1 1 1 1 1 1 1 1 0 0.4011
[9,] 1 0 0 0 1 1 0 0 1 0 1 0 1 0.3929

[10,] 0 0 0 0 1 0 1 0 0 0 1 0 1 0.6032
[11,] 1 1 0 0 0 0 1 1 1 1 1 1 0 0.3798
[12,] 0 1 0 0 0 1 1 0 1 0 0 0 1 0.4396
[13,] 1 0 0 0 0 0 1 0 1 1 0 1 0 0.3909

$MeanItemValue
I8 I10 I7 I14 I4 I9 I11 I16 I6 I1 I20 I23

0.871 0.868 0.861 0.846 0.835 0.821 0.776 0.718 0.657 0.626 0.602 0.505
I17 I13 I3 I12 I2 I18 I25 I5 I15 I22 I21 I24

0.499 0.497 0.472 0.452 0.406 0.377 0.344 0.342 0.313 0.255 0.139 0.133
I19 I26

0.131 0.022

$Cutoff.lst
$Cutoff
[1] 0.3784
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$Cutoff.SE
[1] 0.0201

$Prop.flagged
[1] 0.013

$Tail
[1] "upper"

$Cutoff.CI
2.5% 97.5%

0.3320 0.4064

attr(,"class")
[1] "PerFit.cutoff"

$PFS
[1] "U3"

The output is a list with three elements. The first element is a matrix, $Scores, with the
row rank score identifying the flagged test takers (first column), the item scores, and the
PFS values (last column). The second element is a vector with the proportion-correct values
($MeanItemValue). The third element is the ‘PerFit.cutoff’ object. When the option
scores = FALSE is used then the output omits the item scores and the items’ proportion-
correct values.

The print and summary methods in PerFit
A summary for objects of class ‘PerFit’ is also available. To make the summary more
practically useful to the user we combined the information provided by the object with the
outcome from both the cutoff and the flagged.resp functions. Continuing the example
above:

R> summary(U3.out, cutoff.obj = U3.cutoff)

PFS = U3
Cutoff = 0.3784 (SE = 0.0201).
Tail = upper.
Proportion of flagged respondents = 0.013.
(N.B.: The cutoff varies each time cutoff() is run due to bootstrapping.)

Identified respondents - 13 in total:
278 478 479 486 558 584 588 606 731 772 832 971 990

The summary lists the flagged respondents as well as the details of the cutoff criterion on
which this decision was based. We find this type of information more useful than merely
reporting summaries of the scores of the PFSs.
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Printing a ‘PerFit’ object display the PFS scores on the screen.

The PRFplot function

PRFplot(matrix, respID, h = .09, N.FPts = 101, VarBands = FALSE,
VarBands.area = FALSE, alpha = .05, Xlabel = NA, Xcex = 1.5, Ylabel = NA,
Ycex = 1.5, title = NA, Tcex = 1.5, NA.method = "Pairwise", Save.MatImp =
FALSE, IP = NULL, IRT.PModel = "2PL", Ability = NULL, Ability.PModel =
"ML", mu = 0, sigma = 1, message = TRUE)

Function PRFplot plots nonparametric PRFs with optional variability bands (see argument
VarBands) for all test takers identified in vector respID. It applies to dichotomous data only.
The PRF relates item difficulty (i.e., the values (1 − πi)) on the x-axis with the associated
probability of correct response on the y-axis. The PRF is typically nonincreasing; misfitting
item score vectors will display deviations from this expected pattern. Missing values are ad-
dressed using one of the single imputation methods previously explained (for which arguments
NA.method through sigma apply).
The current implementation of the PRF is based on nonparametric kernel smoothing (Emons
et al. 2004). The value of the PRF at each focal point (representing a nonparametric difficulty
parameter between 0 and 1) is estimated as a weighted sum score, where scores pertaining to
items with difficulty close to the focal point are given the largest weights. The total number
of focal points is defined by N.Fpts (by default N.Fpts = 101). The weights are functions of
the Gaussian kernel function. It is necessary to specify a bandwidth value (argument h) in
order to compute the weights. The h value controls the trade-off between bias and sampling
variation (Emons et al. 2004). Small h values reduce bias but increase variance, leading to
PRFs that capture too much measurement error. Large h values, on the other hand, increase
bias which renders PRFs that are often too flat, thus missing potentially relevant misfitting
response behavior. Therefore, it is important to carefully specify the h value. Emons et al.
(2004, pp. 10–13), after a simulation study, advised that “h values between 0.07 and 0.11 are
reasonable choices”. The function’s default is h = 0.09.
Variability bands of level alpha (alpha = 0.05 by default) can also be added to the plot.
These bands are computed following the jackknife procedure explained in Emons et al. (2004).
The PRFs and variability bands for each test taker are approximated by means of functional
data objects (e.g., Ramsay, Hooker, and Graves 2009), with the help of the fda package
(Ramsay, Wickham, Graves, and Hooker 2014). This procedure follows two steps:

• Compute a B-splines basis system. This basis consists of a set of piecewise polynomials,
all of degree three/order four (i.e., cubic polynomial segments), with one knot per
break point. Any two consecutive splines, sp1 and sp2, with common break point BP,
verify sp1(BP) = sp2(BP), sp′1(BP) = sp′2(BP), and sp′′1(BP) = sp′′2(BP). At 0 and 1
(extremes of the x-range) four knots are used.

• Specify coefficients for the B-splines basis system computed above and then create
functional data objects. The procedure is based on smoothing using regression analysis
(Ramsay et al. 2009, Section 4.3).
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Figure 2: PRFplot(IntelligenceData, 832, VarBands = TRUE, VarBands.area =
TRUE, message = FALSE).

Function PRFplot outputs a list with three functional data objects of class ‘fd’ (see package
fda). PRF.FDO is the functional data object of the PRFs for all test takers; VarBandsLow.FDO
(resp. VarBandsHigh.FDO) is the functional data object of the lower-bound (resp. upper-
bound) of the variability bands, for the entire sample.
Figure 1 (page 5) shows the PRFs for test takers 6, 584, 832, and 772 from the intelligence data.
Figure 2 reproduces the third plot with variability bands included, and includes the R code
in the caption that produces this plot disregarding the axes labels and the title formatting.

The plot method for PerFit

plot(x, cutoff.obj = NULL, ModelFit = "NonParametric", Nreps = 1000, IP =
x$IP, IRT.PModel = x$IRT.PModel, Ability = x$Ability, Ability.PModel =
x$Ability.PModel, mu = 0, sigma = 1, Blvl = 0.05, Breps = 1000, CIlvl =
0.95, UDlvl = NA, Type = "Density", Both.scale = TRUE, Cutoff = TRUE,
Cutoff.int = TRUE, Flagged.ticks = TRUE, Xlabel = NA, Xcex = 1.5, title =
NA, Tcex = 1.5, col.area = "lightpink", col.hist = "lightblue", col.int =
"darkgreen", col.ticks = "red", ...)

Finally, the R plot method was also extended for objects of class ‘PerFit’. This plot displays
the empirical distribution of the scores of the PFS specified by the ‘PerFit’ class object x. A
histogram, density, or a combination of both displays is possible (argument Type with options
"Histogram", "Density" (default), and "Both").
The cutoff score can be added to the plot (Cutoff = TRUE). Either the user provides a
previously computed ‘PerFit.cutoff’ object or the function internally computes it (for which
arguments ModelFit through UDlvl are required). The adequate “flagging region” is colored,
thus indicating the range of values for which the PFS flags test takers as potentially displaying
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Figure 3: plot(U3poly(PhysFuncData, Ncat = 3), Blvl = 0.01).

aberrant behavior. It is possible to display the CIvlv% confidence interval of the cutoff value
on the x-axis (Cutoff.int = TRUE). The width of this interval may give the user a better
idea of the error associated to the estimation of the cutoff. It is also possible to add ticks
to the upper-side of the plot marking the positions of the flagged item score vectors. This
information may be useful to visually distinguish between flagged test takers which are very
close to the cutoff versus those that are further away in the rejection region direction. Finally,
the option both.scale was included to better tune the scale of the y-axis.
As an example, Figure 3 shows the sample distribution of the U3p scores from the physical
functioning data with a bootstrapped 1% cutoff value. Item score vectors with U3p values
larger than 0.29 are flagged as potentially displaying aberrant answering behavior.

4. Discussion
PerFit is a new R package which offers the most widely used PFSs currently available. De-
velopments in person-fit are ongoing and our goal is to keep extending PerFit. Some of the
methods that are likely to be included in future versions of the package include a wider variety
of model-based PFSs (see Karabatsos 2003 and Meijer and Sijtsma 2001), methods suited to
computerized adaptive tests data (the CUSUMs approach; see for example Van Krimpen-
Stoop and Meijer 2001), multitest person-fit approaches, and related methods based on the
concept of person reliability (e.g., Ferrando 2015).
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