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Plan for today

Gentle introduction to survival analysis.

Main source:
Harrell, F. E., Jr. (2015). Regression Modeling Strategies, 2nd edition.
Springer

Chapters:
17, 18, and 20.
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Survival analysis (SA)

Data:
For which the time until the event is of interest.

I This goes beyond logistic regression, which focuses on the
occurrence of the event.

Outcome variable:

I T = Time until the event.
I Often referred to as survival time, failure time, or event time.
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Examples

Survival time: Time until. . .

I death, desease, relapse.

Failure time: Time until. . .

I product malfunction.

Event time: Time until. . .

I graduation, marriage, divorce.
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Advantages of SA over typical regression models

I SA allows modeling units that did not fail up to data collection
(censored on the right data).

I Regression could be considered to model the expected survival
time. But:

I Survival time is often not normally distributed.
I P(survival > t) is often more interesting than E(survival time).
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Censoring

Some subjects:

I Did not experiment the event up to the end of data collection;
I Withdrew from study;
I Were lost to follow-up.

These data are right-censored.

Define random variables for the ith subject:

I Ti = time to event
I Ci = censoring time

I ei = event indicator =
{

1 if event is observed (Ti ≤ Ci)
0 if event is not observed (Ti > Ci)

I Yi = min(Ti, Ci) = what occurred first (failure or censoring)

Variables {Yi, ei} include all the necessary information.
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Typical data set

Ti Ci Yi ei
5 10 5 1
4 12 4 1

13+ 13 13 0
5 10 5 1

15+ 15 15 0

Observe the flexibility of SA data:

I Subjects may join the study at different moments.
I Censoring times may differ among subjects.

{Yi, ei} does include all the necessary information.

But, assumption: Censoring is non-informative, i.e., it is independent of
the risk of the event.
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Three main functions

T = time until event.

I Survival function:

S(t) = P(T > t) = 1− F(t),

where F = P(T ≤ t) is the distribution function of T.

I Cumulative hazard function:

Λ(t) = − log(S(t))

I Hazard function:
λ(t) = Λ′(t)

8 / 52



Survival function

S(t) = P(T > t) = 1− F(t)

Example:
If event = death, then S(t) = prob. death occurs after time t.

Properties:

I S(0) = 1, S(∞) = 0.
I Non-increasing function of t.
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Cumulative hazard function

Λ(t) = − log(S(t))

Idea:
Accumulated risk up until time t.

Properties:

I Λ(0) = 0.
I Non-decreasing function of t.
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Hazard function

λ(t) = Λ′(t)

Idea:
Instantaneous event rate at time t.
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Relation between the three functions

All functions are related:
Any two functions can be derived from the third function.

I The three functions are equivalent ways of describing the same
random variable (T = time until event).

More generally, all the following functions give mathematically
equivalent specifications of the distribution of T:

I F(t): Distribution function
I f (t): Density function
I S(t): Survival function
I λ(t): Hazard function
I Λ(t): Cumulative hazard function.
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Examples

Next are two primary examples of parametric survival distributions:

I the exponential distribution;
I the Weibull distribution.

These models (still) include no covariates, thus:

I Each subject in the sample is assumed to have the same
distribution of T.

No formulas for now.
Instead: Let’s plot.
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Exponential survival distribution
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Weibull survival distribution (I)
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Weibull survival distribution (II)
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Quantiles
Q: What is the time by which (100q)% of the population will fail?

A: Value tq such that F(tq) = q, or, equiv., S(tq) = 1− q.

In particular, median survival time = t.50.
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Expected failure time
(Note: T is skewed, so the mean is not the best summary. Better use
median.)

Q: What is the expected failure time?

A: It is the area under the survival function.
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Various estimation approaches

There are several options available to estimate the survival function
(and friends).

Here we will briefly go through only a few:

I Not parametric and homogeneous (i.e., without predictors):
X Kaplan-Meier estimator
X Altschuler-Nelson estimator.

I Parametric:
X Homogeneous (i.e., no predictors):

Exponential, Weibull, normal, logistic, log-normal, log-logistic,. . .
X Proportional hazards models
X Semi-parametric:

Cox proportional hazards regression model.

After a brief intro to each, I will use them all on an empirical dataset.
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Kaplan-Meier estimator
I Also known as the product-limit estimator.
I Non parametric, and super simple to do even manually.
I Key ingredient: Conditional probabilites.

Assume t = 0, 1, 2, . . .
We have that S(0) = P(T > 0) = 1. For t ≥ 1 we then have that

P(T > t|T > t− 1) =
P(T > t, T > t− 1)

P(T > t− 1)
=

P(T > t)
P(T > t− 1)

and so
P(T > t) = P(T > t− 1)× P(T > t|T > t− 1),

or in terms of the survival function,

S(t) = S(t− 1)× P(T > t|T > t− 1)

S(t) = S(t− 1)× (1− P(T ≤ t|T > t− 1))
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Kaplan-Meier estimator – Example

Data: Seven subjects; failure times T = 1, 3, 3, 3+, 6+, 9, 10+.

Day No. subjects Deaths Censored S(t) = S(t− 1)×
at risk ×(1− P(T ≤ t|T > t− 1))

1 7 1 0 1× (1− 1/7) = 6/7
3 7− (1 + 0) = 6 2 1 6/7× (1− 2/6) = 4/7
6 6− (2 + 1) = 3 0 1 4/7× (1− 0/3) = 4/7
9 3− (0 + 1) = 2 1 0 4/7× (1− 1/2) = 2/7

10 2− (1 + 0) = 1 0 1 2/7× (1− 0/1) = 2/7

Hence:

S(t) =


1, 0 ≤ t < 1

6/7 = .86, 1 ≤ t < 3
4/7 = .57, 3 ≤ t < 9
2/7 = .29, 9 ≤ t < 10

undefined∗, t ≥ 10

.

∗Not everyone failed by t = 10, so we cannot tell what happened after that.
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Kaplan-Meier estimator – Example
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Altschuler-Nelson estimator

I Non parametric, also simple.
I Similar to Kaplan-Meier, but based on Λ(t).

Recall that Λ(t) = accumulated risk up until time t.

Hence it makes sense to estimate Λ(t) by

Λ̂(t) = ∑
i:ti≤t

# failures at ti
# subjects at risk at ti

.

Then,
Ŝ(t) = exp(−Λ̂(t)).

Interesting property: ∑i Λ̂(Yi) = total number of events.

23 / 52



Altschuler-Nelson estimator – Example
Data: Seven subjects; failure times T = 1, 3, 3, 3+, 6+, 9, 10+.

Day No. subjects Deaths Censored Λ(t)
at risk

1 7 1 0 1/7
3 7− (1 + 0) = 6 2 1 1/7 + 2/6 = 10/21
6 6− (2 + 1) = 3 0 1 10/21 + 0/3 = 10/21
9 3− (0 + 1) = 2 1 0 10/21 + 1/2 = 41/42

10 2− (1 + 0) = 1 0 1 41/42 + 0/1 = 41/42
∑i = 4 ∑i = 4

Hence:

S(t) = exp(−Λ(t)) =


exp(0) = 1, 0 ≤ t < 1

exp(−1/7) = .87, 1 ≤ t < 3
exp(−10/21) = .62, 3 ≤ t < 9
exp(−41/42) = .38, 9 ≤ t < 10

undefined, t ≥ 10

.
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Altschuler-Nelson estimator – Example
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Homogeneous parametric models
Q: How about continuous, parametric, counterparts to KM and AN?

Still incorporating no predictors?

A: There are really a lot of possibilities.

Most common examples:

I Exponential
I Weibull
I Normal
I Logistic
I Log-normal
I Log-logistic
I . . .

My advice:
Just fit several of these and compare.
There is no ‘best’ model, it depends on the data.
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Homogeneous parametric models

Data: T = 1, 3, 3, 3+, 6+, 9, 10+.
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Assessing model fit

I like Harrell’s take on this:

I To assess model fit, use graphical methods.
I No significance tests at this point, great!
I But there are some test options, see e.g. Chapter 20.

We show an example:
Assess the fit of the exponential model.

Two plotting options, akin to QQ-plots:

I Plot S−1
Exp(SKM(T)) versus T;

I Plot SExp(T) versus SKM(T).
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Assessing model fit

Data: T = 1, 3, 3, 3+, 6+, 9, 10+.
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Parametric proportional hazards model
First model until now that allows incorporating predictor variables
X = {X1, X2, . . . , Xk}.

I Xi can be continuous, dichotomous, polytomous, etc.

The proportional hazards (PH) model generalizes the hazard function
λ(t):

λ(t|X) = λ(t)

relative hazard function︷ ︸︸ ︷
exp(β0 + β1X1 + β2X2 + · · ·+ βxXk︸ ︷︷ ︸

Xβ

) = λ(t) exp(Xβ)

I λ(t|X) = hazard function for T given the predictors X.
I λ(t) = ’underlying’ hazard function (for a subject with Xβ = 0).
I exp(Xβ) describes the relative effects of the predictors.

Note: The intercept β0 may be omitted (kind of ‘absorbed’ into λ(t)).
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Parametric proportional hazards model

λ(t|X) = λ(t) exp(Xβ)

Here are the ‘friends’:

Λ(t|X) = Λ(t) exp(Xβ)

S(t|X) = S(t)exp(Xβ)

I Λ(t) = ’underlying’ cumulative hazard function
(for a subject with Xβ = 0).

I S(t) = ’underlying’ survival function
(for a subject with Xβ = 0).
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Parametric proportional hazards model

It is easier to consider the log-model versions:

log λ(t|X) = log λ(t) + Xβ

log Λ(t|X) = log Λ(t) + Xβ

log S(t|X) = log S(t)︸ ︷︷ ︸
time

× exp(Xβ)︸ ︷︷ ︸
predictors

I Observe that we separated the time and the predictors
components.

Important consequence due to the separability of t and X:

I The effect of X is assumed to be the same at all values of t.
I I.e.: We assume no t× X interaction effect.
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Parametric proportional hazards model

How to interpret regression coefficient β j (j = 1, . . . , k)?

log λ(t|X) = log λ(t) + (β0 + β1X1 + β2X2 + · · ·+ βxXk)

log Λ(t|X) = log Λ(t)︸ ︷︷ ︸
time

+ (β0 + β1X1 + β2X2 + · · ·+ βxXk)︸ ︷︷ ︸
predictors

Additive interpretation:

I log λ(t|X) increases by β j units when Xj increases by 1 unit at any
time point t, holding all the other predictors constant:

log λ(t| . . . , Xj + 1, . . .) = log λ(t| . . . , Xj, . . .) + β j.

I Same for log Λ(t|X).
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Parametric proportional hazards model
How to interpret regression coefficient β j (j = 1, . . . , k)?

λ(t|X) = λ(t) × exp(β0 + β1X1 + β2X2 + · · ·+ βxXk)

Λ(t|X) = Λ(t) × exp(β0 + β1X1 + β2X2 + · · ·+ βxXk)

log S(t|X) = log S(t)︸ ︷︷ ︸
time

× exp(β0 + β1X1 + β2X2 + · · ·+ βxXk)︸ ︷︷ ︸
predictors

Multiplicative interpretation:

I λ(t|X) is multiplied by exp(β j) units when Xj increases by 1 unit
at any time point t, holding all the other predictors constant:

λ(t| . . . , Xj + 1, . . .)
λ(t| . . . , Xj, . . .)︸ ︷︷ ︸

hazard ratio

= exp(β j).

I Same for Λ(t|X).
I Same for log S(t|X).
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Hazard ratio

HR =
λ(t|...,Xj+1,...)

λ(t|...,Xj ,...)

I HR = 1: No effect, i.e., Xj is unrelated to P(event).

I HR < 1: Hazard reduction, i.e., Xj is negatively associated with
P(event). Larger survival time.

I HR > 1: Hazard increase, i.e., Xj is positively associated with
P(event). Smaller survival time.
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Proportional hazards assumption

The hazards ratio for any two subjects is independent of time:

λ(t|XSub1)

λ(t|XSub2)
= exp [β(XSub1 − XSub2)]︸ ︷︷ ︸

no t here!

In particular:

I The hazard curves for different groups (e.g., sex groups) should
be proportional and thus cannot cross.

36 / 52



Example: Exponential PH survival model
Xβ = β0 + β1X1 + β2X2 + · · ·+ βxXk.

λ(t|X) = exp(Xβ)

Λ(t|X) = t exp(Xβ)

S(t|X) = exp(−t)exp(Xβ)
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Example: Weibull PH survival model
Xβ = β0 + β1X1 + β2X2 + · · ·+ βxXk.

λ(t|X) = γtγ−1 exp(Xβ)

Λ(t|X) = tγ exp(Xβ)

S(t|X) = exp(−tγ)exp(Xβ)
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Cox proportional hazards model
Seemingly the most popular survival model used.

The Cox PH model:

λ(t|X) = λ(t) exp(Xβ)

I Looks the same as the general PH model!
I But, it is semiparametric:

X It makes a parametric assumption in Xβ = β1X1 + · · ·+ βxXk.
(NB: No intercept is typical for the Cox PH model.)

X But, it assumes no parametric model for the hazard function λ(t).
Actually, it won’t even be estimated!

Rationale:

I The true hazard function λ(t) may be too complex.
I The effect of the predictors is more relevant than the shape of λ(t).

The Cox PH model allows bypassing λ(t).
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Cox proportional hazards model

But how does this magic work?

I Use the rank ordering of T.

Advantages:

I Better protection against outliers.
I The Cox PH model is more efficient than parametric PH models

when parametric assumptions are strongly violated.
I Surprisingly, the Cox PH model is as efficient as parametric PH

models even when parametric assumptions hold.
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Final worked out example

I will use the lung dataset from the survival package in R.

I The data concern survival in patients with advanced lung cancer.
I These data have been analyzed ad nauseam, e.g.:
I Tutorial 1
I Tutorial 2
I Tutorial 3
I Using Bayesian statistics and Stan!

I will just run some basics.

Want something else to play afterwards?

I Check other datasets in the survival R package, it has plenty (e.g.,
ovarian, veteran).

I Bayesian analysis on mastectomy data (HSAUR R package)
I Recidivism data (carData R package)
I . . .
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Lung data

Time and censoring

Yi =time ei=status

306 2
455 2
1010 1
210 2
883 2
1022 1

...
...

Predictors

age sex ph.ecog ph.karno wt.loss

74 1 1 90 NA
68 1 0 90 15
56 1 0 90 15
57 1 1 90 11
60 1 0 100 0
74 1 1 50 0
...

...
...

...
...

I time: Survival time in days

I status: Censoring
(1=censored, 2=dead)

I age: Age in years

I sex: Male=1, Female=2

I ph.ecog: ECOG performance score
(0=good, . . . , 5=dead)

I ph.karno: 0-100 performance score (physician)

I wt.loss: Weight loss in last 6 months

42 / 52



In R

There are loads of packages and options to go about:

I rms
I survival
I survminer
I . . .

I’ll use functions from various packages depending on functionality
and eye-candyness.
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Lung data: Kaplan-Meier
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Lung data: Kaplan-Meier

What is P(t > 365 days)?
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Lung data: Kaplan-Meier

What is the average (median) survival time?
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Lung data: Homogeneous parametric models

With no predictors.
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Lung data: Cox regression
First we regress T on sex.

term estimate std.error statistic p.value conf.low conf.high

sex -0.53 0.17 -3.18 0 -0.86 -0.2

Hence
λ(t|sex) = λ(t) exp(−.53sex)

and

hazard ratio =
λ(t|sex = 2)
λ(t|sex = 1)

=
λ(t|Female)
λ(t|Male)

= exp(−.53) ' .59.

(Multiplicative) Interpretation:

I .59 times as many females are dying as males, at any time t.

or, equivalently,

I Being female reduces the hazard by (1− .59)100% = 41%.
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Lung data: Cox regression
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Lung data: Cox regression
Adding more predictors.

term estimate std.error statistic p.value conf.low conf.high

sex -0.63 0.18 -3.56 0.00 -0.98 -0.28
age 0.02 0.01 1.55 0.12 0.00 0.03
ph.ecog 0.74 0.19 3.87 0.00 0.37 1.12
ph.karno 0.02 0.01 1.56 0.12 0.00 0.03
wt.loss -0.01 0.01 -1.39 0.17 -0.02 0.00

Holding the other predictors constant, . . .

I HRsex = exp(−.63) = .53:
. . . being female reduces the hazard rate by a factor of .53 (47%), at
any time t.

I HRage = exp(.02) = 1.02:
. . . each extra year increases the hazard rate by a factor of 1.02 (2%),
at any time t.

I . . .
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Lung data: Cox regression
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Conclusion

Survival analysis offers a plethora of statistical models suitable to
analyze ‘time to event’ data.

Much more is to be said on this topic. For instance:

I More on assumption checking
(a lot of plotting options are available, also a few tests. . . ).

I More plotting possibilities.
I Model comparison.
I Bayesian survival analysis!
I Accelerated failure time models.
I More complex models.
I . . .
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