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Plan for today

Gentle introduction to survival analysis.

Main source:
Harrell, F. E., Jr. (2015). Regression Modeling Strategies, 2nd edition.
Springer

Chapters:
17,18, and 20.
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Survival analysis (SA)

Data:
For which the time until the event is of interest.

» This goes beyond logistic regression, which focuses on the
occurrence of the event.

Outcome variable:

» T = Time until the event.

» Often referred to as survival time, failure time, or event time.
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Examples

Survival time: Time until. . .

» death, desease, relapse.

Failure time: Time until. ..

» product malfunction.

Event time: Time until. ..

» graduation, marriage, divorce.
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Advantages of SA over typical regression models

» SA allows modeling units that did not fail up to data collection
(censored on the right data).
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» Regression could be considered to model the expected survival
time. But:

» Survival time is often not normally distributed.

» P(survival > t) is often more interesting than E(survival time).
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Censoring

Some subjects:

» Did not experiment the event up to the end of data collection;
» Withdrew from study;
» Were lost to follow-up.

These data are right-censored.

Define random variables for the ith subject:

» T; = time to event

» C; = censoring time

1 if eventis observed (T; < C;)

0 if event is not observed (T; > C;)
» Y; = min(T;, C;) = what occurred first (failure or censoring)

» ¢; = event indicator = {

Variables {Y;, ¢; } include all the necessary information.
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Typical data set
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Observe the flexibility of SA data:

» Subjects may join the study at different moments.
» Censoring times may differ among subjects.

{Y;, e;} does include all the necessary information.

But, assumption: Censoring is non-informative, i.e., it is independent of
the risk of the event.
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Three main functions

T = time until event.

» Survival function:
S(£) =P(T >t)=1—F(t),

where F = P(T < t) is the distribution function of T.

» Cumulative hazard function:
A(t) = —log(S(t))

» Hazard function:
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Survival function

[S(6) = P(T > 1) =1-F(t)]

Example:
If event = death, then S(t) = prob. death occurs after time .

Properties:

» 5(0) =1,S(c0) =0.
» Non-increasing function of ¢.
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Cumulative hazard function

[A(t) = —log(S()) |

Idea:
Accumulated risk up until time ¢.
Properties:

» A(0) =0.

» Non-decreasing function of f.
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Hazard function

Idea:

A(t) = N (t)

Instantaneous event rate at time ¢.

At
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Relation between the three functions

All functions are related:
Any two functions can be derived from the third function.

» The three functions are equivalent ways of describing the same
random variable (T = time until event).

More generally, all the following functions give mathematically
equivalent specifications of the distribution of T:

» F(t): Distribution function
f (t): Density function
S(t): Survival function
A(t): Hazard function
A(t): Cumulative hazard function.
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Examples

Next are two primary examples of parametric survival distributions:

» the exponential distribution;
» the Weibull distribution.

These models (still) include no covariates, thus:

» Each subject in the sample is assumed to have the same
distribution of T.

No formulas for now.
Instead: Let’s plot.
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Exponential survival distribution
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Weibull survival distribution (1)
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Weibull survival distribution (11)
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Quantiles
Q: What is the time by which (100g)% of the population will fail?
A: Value t; such that F(t;) = g, or, equiv., S(t;) =1 —¢.
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In particular, median survival time = 5.
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Expected failure time

(Note: T is skewed, so the mean is not the best summary. Better use
median.)

Q: What is the expected failure time?
A: It is the area under the survival function.
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Various estimation approaches

There are several options available to estimate the survival function
(and friends).

Here we will briefly go through only a few:

» Not parametric and homogeneous (i.e., without predictors):
v Kaplan-Meier estimator
v’ Altschuler-Nelson estimator.

» Parametric:
v' Homogeneous (i.e., no predictors):
Exponential, Weibull, normal, logistic, log-normal, log-logistic,. ..
v’ Proportional hazards models
v Semi-parametric:
Cox proportional hazards regression model.

After a brief intro to each, I will use them all on an empirical dataset.
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Kaplan-Meier estimator

» Also known as the product-limit estimator.
» Non parametric, and super simple to do even manually.
» Key ingredient: Conditional probabilites.

Assumet =0,1,2,...
We have that S(0) = P(T > 0) = 1. For t > 1 we then have that

P(T T -1 P(T
P(T>tT>t-1)= Weprei=l) B>

P(T>t—1) P(T>t—1)

and so
P(T>t)=P(T>t—1)xP(T>¢tT>t-1),

or in terms of the survival function,

S(H)=S(t—1) x P(T > t|IT >t — 1)

S(H) =8(t—1) x (1= P(T <H[T >t —1))]
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Kaplan-Meier estimator — Example

Data: Seven subjects; failure times T = 1,3,3,3+,6+,9,10+.

Day No. subjects Deaths  Censored S(t) =S(t—1)x
at risk x(1—P(T <tT>t—1))
1 7 1 0 1x(1-1/7)=6/7
3 7-(140) = 2 1 6/7x (1—-2/6) =4/7
6 6-(2+1)= 0 1 4/7 x (1-0/3) = 4/7
9  3-(0+1) = 1 0 4/7x (1-1/2) =2/7
10 2-(1+0)=1 0 1 2/7x (1-0/1) =2/7
Hence:

1, 0<t<1

6/7=.86, 1<t<3

S(t) = 4/7=57, 3<t<9

2/7=.29, 9<t<10

undefined®, t>10

“Not everyone failed by t = 10, so we cannot tell what happened after that.
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Kaplan-Meier estimator — Example
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Altschuler-Nelson estimator

» Non parametric, also simple.
» Similar to Kaplan-Meier, but based on A().

Recall that A(t) = accumulated risk up until time .

Hence it makes sense to estimate A(t) by

/A\(t) _ Z # failures at t;

1= # subjects at risk at t; '

Then,

~

5(t) = exp(—A(#))-

Interesting property: ¥; A(Y;) = total number of events.
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Altschuler-Nelson estimator — Example

Data: Seven subjects; failure times T = 1,3,3,3+,6+,9,10+.

Day No. subjects Deaths  Censored A(t)
at risk
1 7 1 0 1/7
3 77(1+O): 2 1 1/7+2/6 =10/21
6 6—(24+1) = 0 1 10/21+0/3 =10/21
9 3-(0+1)=2 1 0 10/21+1/2 = 41/42
10 2-(140)= 0 1 41/42+0/1=41/42
DVES Ly =4
Hence:
exp(0) = 0<t<1
exp(—1/7) = 87 1<t<3
S(t) =exp(—A(t)) =1 exp(—10/21) = 3<t<9
exp(—41/42) = 38 9<t<10
undefined, t > 10
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Altschuler-Nelson estimator — Example
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Homogeneous parametric models

Q: How about continuous, parametric, counterparts to KM and AN?
Still incorporating no predictors?

A: There are really a lot of possibilities.

Most common examples:

» Exponential
» Weibull

» Normal

» Logistic

» Log-normal

» Log-logistic

> os0

My advice:

Just fit several of these and compare.

There is no ‘best” model, it depends on the data.
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Homogeneous parametric models

Data: T =1,3,3,3+,6+,9,10+.

Survival Probability
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Assessing model fit

I like Harrell’s take on this:

» To assess model fit, use graphical methods.
» No significance tests at this point, great!
» But there are some test options, see e.g. Chapter 20.

We show an example:
Assess the fit of the exponential model.

Two plotting options, akin to QQ-plots:

» Plot SEQP(SKM(T)) versus T;
» Plot Sg,p, (T) versus Sxm(T).
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Assessing model fit

Data: T =1,3,3,3+,6+,9,10+.
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Parametric proportional hazards model

First model until now that allows incorporating predictor variables
X = {X1,Xo, ..., X}

» X; can be continuous, dichotomous, polytomous, etc.

The proportional hazards (PH) model generalizes the hazard function
A(t):

relative hazard function
A(HX) = At)exp(Bo + B1X1 + BaXo + - + Bx Xx) = At) exp(XPB)
Xp

» A(t|X) = hazard function for T given the predictors X.
» A(t) = 'underlying’ hazard function (for a subject with X = 0).
» exp(Xp) describes the relative effects of the predictors.

Note: The intercept By may be omitted (kind of ‘absorbed” into A(t)).
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Parametric proportional hazards model

[A(X) = A(t) exp(XB) |

Here are the ‘friends”:

A(t]X) = A(t) exp(XB)
S(t|X) = S(t)>PXP)

» A(t) = 'underlying’ cumulative hazard function
(for a subject with Xp = 0).

» S(t) = "underlying’ survival function
(for a subject with Xp = 0).
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Parametric proportional hazards model

It is easier to consider the log-model versions:
log A(t|X) =log A(t) + XB
log A(t|X) =log A(t) + XB

log S(t|X) = log S(t) x exp(Xp)

N—— —

time predictors

» Observe that we separated the time and the predictors
components.

Important consequence due to the separability of ¢ and X:

» The effect of X is assumed to be the same at all values of ¢.
» Le.: We assume no t x X interaction effect.
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Parametric proportional hazards model

How to interpret regression coefficient ; (j = 1,...,k)?

log A(t|X) = log A(t) + (Bo + B1X1 + BaXa + - - - + BxXx)
log A(t|X) =log A(t) + (Bo+ B1X1 + BaXa + - - + BxXi)

-

time predictors

Additive interpretation:

» log A(t|X) increases by B; units when X; increases by 1 unit at any
time point ¢, holding all the other predictors constant:

logA(t]..., X;j+1,...) =logA(t]...,Xj,...) + Bj.

» Same for log A(t|X).
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Parametric proportional hazards model
How to interpret regression coefficient ; (j = 1,...,k)?

A(HX) =At)  xexp(Bo+ P1X1+ B2Xa+ - + BxX)
A(t|X) = A(t)  xexp(Bo+ B1X1 + BaXo+ - + B X)
log S(tX) = I&gj@ x exp(Bo + B1X1 + BaXo + - - - + B Xi)

time predictors

Multiplicative interpretation:

» A(t|X) is multiplied by exp(B;) units when X; increases by 1 unit
at any time point f, holding all the other predictors constant:

A(t..., X +1,...)
A(f\--.,]x,-,...) = exp(p;)-

hazard ratio

» Same for A(t|X).
» Same for log S(#|X).
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Hazard ratio

At Xj41,..)

HR = At X )

» HR = 1: No effect, i.e., X; is unrelated to P(event).

» HR < 1: Hazard reduction, i.e., X; is negatively associated with
P(event). Larger survival time.

» HR > 1: Hazard increase, i.e., X is positively associated with
P(event). Smaller survival time.
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Proportional hazards assumption

The hazards ratio for any two subjects is independent of time:

A(HXSubl)

= ex X —X
)\(t|X5ub2) P [ﬁ( Subl SuhZ)]

no t here!

In particular:

» The hazard curves for different groups (e.g., sex groups) should
be proportional and thus cannot cross.
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Example: Exponential PH survival model
XB = Bo+P1X1 + B2Xa + - + Bx X
A(tX) = exp(XB)
A(t|X) = texp(XB)
S(t|X) = exp(—t)>PXp)
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Example: Weibull PH survival model
XB = Bo+p1X1+ BaXo+ -+ BxXx

A(EX) = 1671 exp(Xp)
A(t|X) = tTexp(XB)
S(t‘X) ES exp(_t'Y)eXP(Xﬁ)

A

T T T 1
0.0 0.5 1.0 15 20

38/52



Cox proportional hazards model
Seemingly the most popular survival model used.

The Cox PH model:

[AtX) = A(t) exp(XB) |

» Looks the same as the general PH model!
» But, it is semiparametric:
V' It makes a parametric assumption in XpB = B1X; + - - - + By X.
(NB: No intercept is typical for the Cox PH model.)
v’ But, it assumes no parametric model for the hazard function A(t).
Actually, it won’t even be estimated!

Rationale:
» The true hazard function A(f) may be too complex.

» The effect of the predictors is more relevant than the shape of A(t).

The Cox PH model allows bypassing A(f).
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Cox proportional hazards model

But how does this magic work?

» Use the rank ordering of T.

Advantages:

» Better protection against outliers.

» The Cox PH model is more efficient than parametric PH models
when parametric assumptions are strongly violated.

» Surprisingly, the Cox PH model is as efficient as parametric PH
models even when parametric assumptions hold.
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Final worked out example

I will use the lung dataset from the survival package in R.

» The data concern survival in patients with advanced lung cancer.
» These data have been analyzed ad nauseam, e.g.:
» Tutorial 1

» Tutorial 2

» Tutorial 3

» Using Bayesian statistics and Stan!

w

I will just run some basics.

Want something else to play afterwards?

» Check other datasets in the survival R package, it has plenty (e.g.,
ovarian, veteran).

» Bayesian analysis on mastectomy data (HSAUR R package)

» Recidivism data (carData R package)

> cso
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http://www.emilyzabor.com/tutorials/survival_analysis_in_r_tutorial.html
http://www.sthda.com/english/wiki/cox-proportional-hazards-model
http://rstudio-pubs-static.s3.amazonaws.com/5896_8f0fed2ccbbd42489276e554a05af87e.html
https://ermeel86.github.io/case_studies/surv_stan_example.html
https://docs.pymc.io/notebooks/survival_analysis.html
https://socialsciences.mcmaster.ca/jfox/Books/Companion/appendices/Appendix-Cox-Regression.pdf

Lung data

Time and censoring Predictors
Y; =time  e;=status age sex phecog phkarno wt.loss
306 2 74 1 1 90 NA
455 2 68 1 0 90 15
1010 1 56 1 0 90 15
210 2 57 1 1 90 11
883 2 60 1 0 100 0
1022 1 74 1 1 50 0
» time: Survival time in days » age: Age in years
» status: Censoring » sex: Male=1, Female=2

(= cenzeed, 2=t o) » ph.ecog: ECOG performance score
(0=good, ..., 5=dead)
» ph.karno: 0-100 performance score (physician)

» wt.loss: Weight loss in last 6 months

42/52



In R

There are loads of packages and options to go about:

» rms

» survival
» survminer
> ...

I'll use functions from various packages depending on functionality
and eye-candyness.
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Lung data: Kaplan-Meier

Survival Probability
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Lung data: Kaplan-Meier

What is P(t > 365 days)?
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Lung data: Kaplan-Meier

What is the average (median) survival time?

Survival Probability
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Lung data: Homogeneous parametric models

With no predictors.

Survival Probability
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Lung data: Cox regression

First we regress T on sex.

term estimate std.error statistic p.value conflow confhigh

sex -0.53 0.17 -3.18 0 -0.86 -0.2

Hence
A(t[sex) = A(t) exp(—.53sex)

and

. A(t|sex =2)  A(t|Female)
h — = - . o= .
azard ratio Atsex = 1) A([]Male) exp(—.53) ~ .59

(Multiplicative) Interpretation:
» .59 times as many females are dying as males, at any time .
or, equivalently,

» Being female reduces the hazard by (1 —.59)100% = 41%.
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Lung data: Cox regression

Survival Probability
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Lung data: Cox regression

Adding more predictors.
term estimate  std.error statistic ~p.value conflow confhigh
sex -0.63 0.18 -3.56 0.00 -0.98 -0.28
age 0.02 0.01 1.55 0.12 0.00 0.03
ph.ecog 0.74 0.19 3.87 0.00 0.37 1.12
ph.karno 0.02 0.01 1.56 0.12 0.00 0.03
wt.loss -0.01 0.01 -1.39 0.17 -0.02 0.00

Holding the other predictors constant, ...

» HRgsex = exp(—.63) = .53:
... being female reduces the hazard rate by a factor of .53 (47%), at
any time £.

» HRage = exp(.02) = 1.02:
...each extra year increases the hazard rate by a factor of 1.02 (2%),
at any time ¢.

> s
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Lung data: Cox regression
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Conclusion

Survival analysis offers a plethora of statistical models suitable to
analyze ‘time to event’ data.

Much more is to be said on this topic. For instance:

» More on assumption checking

(a lot of plotting options are available, also a few tests...).
More plotting possibilities.

Model comparison.

Bayesian survival analysis!

Accelerated failure time models.

| 4
| 4
>
4
» More complex models.
>
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