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What is equating?

Main idea

Tests are widespread assessment tools.

Different test forms are often administered on multiple occasions.

Test forms are usually built under strict test specifications.

Test specifications try to ensure that test forms are as similar as possible.

But, are they?

“This year’s exam was waaay easier than last year, no?”

“The resit was sooo much harder than the regular exam! Why?!?”
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What is equating?

Main idea

How to make sure that test forms are similar?
−→ Perform test equating.

Definition
Equating is a statistical process that is used to adjust scores on test forms so that
scores on the forms can be used interchangeably.

Equating adjusts for differences in difficulty among forms that are built to be
similar in difficulty and content.

(Kolen & Brennan, 2014, p. 2)
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What is equating?

Main idea

Example

Student A took the regular Stats exam in 2015-16: Grade = 5.7→ 6.
Student B took the regular Stats exam in 2016-17: Grade = 5.2→ 5.

Possible explanations:

Student A is higher achieving than Student B.

The 2015-16 exam was easier, in spite of the exams being ‘parallel’ (unfair!).

Equating accounts for differences in test forms’ difficulty by converting (say) the
grade of the 2016-17 exam onto the grade scale of the 2015-16 exam.

After equating, differences in grades are no longer attributed to differences in
exam difficulty.
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What is equating?

Caveats

Equating adjusts for differences in difficulty, not for differences in content.

Test forms are expected to be as similar as possible in content and statistical
specifications. (Otherwise, consider linking.)

Depending on the testing setting and on the test equating model, some
assumptions need to be met in order for equating to proceed.

In some circumstances, not equating may be the best solution.
(E.g., if samples are extremely small.)
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Desirable properties of equating

Desirable properties of equating

Symmetry The equating function is invertible.
Example: If fNew→Old(6.2) = 6.6, then fOld→New (6.6) = 6.2.
(In particular, regression is ruled out!)

Same specifications Test forms are similar in content and statistical specifications.

(Weak) Equity It does not matter which test form a student takes.
Examinees are expected to earn the same (equated) score on the
NEW form as they would on the OLD form.

Some assumptions are method-specific:

Mean equating The distribution of the converted scores of FormNew has the same
mean as the distribution of scores of FormOld.

Linear equating The distribution of the converted scores of FormNew has the same
mean and SD as the distribution of scores of FormOld.

Equipercentile equating The distribution of the converted scores of FormNew is
equal to the distribution of scores of FormOld.
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Equating designs

Equating designs

Three common designs:

Random groups design Forms are administered simultaneously (one form per
examinee, randomly assigned).

Single group design with counterbalancing Forms are administered simultaneously
to all examinees (in alternating order).

Common-item nonequivalent groups design (NEAT) Test forms have common
items, which are used to control for ability differences between the
groups of examinees.
The common items:

Are a ‘mini version’ of the total test form.
Behave similarly in both forms (e.g., similarly placed).
Should be ipsis verbis the same.
Are either internal or external.
Adjust for group (i.e., population) differences.

The NEAT design is by far the most popular design.
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Error in equating analyses

Error in equating analyses

Two types of error exist:

Random equating error

Due to sampling from population of examinees to estimate parameters.
Quantifiable (standard error of equating).
N larger ⇒ random equating error smaller.

Systematic equating error

Due to the equating method used (and failure to meet its assumptions).
For example, under the NEAT design, systematic error may be expected
when:

The common items are not representative of the whole test.
The common items function differently for each group of examinees.

Hard to quantify.
Larger samples don’t necessarily reduce the problem.

In cases where large equating error is to be expected, not equating may be
preferable to equating.
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Equating under the random groups design (classic methods)

Equating under the random groups design (classic methods)

Assume the two basic equating properties (symmetry, same specifications).
Three methods:

Mean equating.

Linear equating.

Equipercentile equating.

Notation:

Form X New form

Form Y Old form

eqY (x) Equating function that converts scores on Form X to the scale of
Form Y.
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Equating under the random groups design (classic methods)

Mean equating

Assumption
Form X is considered to differ in difficulty from Form Y by a constant amount
along the score scale.

x − µ(X ) = y − µ(Y ),

so
eqY (x) = y = 1︸︷︷︸

A

x + [µ(Y )− µ(X )]︸ ︷︷ ︸
B

.

= Ax + B, a straight line
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Equating under the random groups design (classic methods)

Linear equating

Assumption
Scale scores differ in both location and scale.

x − µ(X )

σ(X )
=

y − µ(Y )

σ(Y )
,

so

eqY (x) = y =
σ(Y )

σ(X )︸ ︷︷ ︸
A

x +

[
µ(Y )− σ(Y )

σ(X )
µ(X )

]
︸ ︷︷ ︸

B

.

= Ax + B, a straight line
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Equating under the random groups design (classic methods)

Mean and linear equating properties

For both the mean and the linear equating methods,

E[eqY (X )] = µ(Y ).

The mean of Form X scores equated to the Form Y scale is equal to the
mean of the Form Y scores.

For mean equating,
σ[eqY (X )] = σ(X ).

The SD of Form X scores equated to the Form Y scale is equal to the SD of
the Form X scores.

For linear equating,
σ[eqY (X )] = σ(Y ).

The SD of Form X scores equated to the Form Y scale is equal to the SD of
the Form Y scores.

Both the mean and linear equating methods are symmetric, i.e.,

eqY (x) = y ⇒ eqX (y) = x .
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Equating under the random groups design (classic methods)

Equipercentile equating

A curvilinear function (instead of a straight line) is estimated. So, more general
than mean or linear equating.

Example
Equipercentile (but not mean or linear equating) can be used if Form X is more
difficult than Form Y at high and low scores, but less difficult at the middle scores.

Goal
The distribution of scores on Form X converted to the Form Y scale is equal to
the distribution of scores on Form Y, based on percentile ranks:

eY (x) = G−1[F (x)],

where

F (x) = P(X ≤ x)

G (y) = P(Y ≤ y)
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Equating under the random groups design (classic methods)

Equipercentile equating

Example

Suppose that, on Form X, 30% of students scored 6.0 or less (i.e.,
P(X ≤ 6) = .30).

Suppose that, on Form Y, 30% of students scored 6.5 or less (i.e.,
P(Y ≤ 6.5) = .30).

Then
eqY (x = 6.0) = 6.5.

Notes
Equipercentile equating:

Does meet the symmetry assumption.

Assumes that test scores are continuous random variables. For integer test
scoring some adaptations are needed.

For (much) more details go to Kolen and Brennan (2014).
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Equating under the random groups design (classic methods)

Equipercentile equating – Smoothing

Sample percentiles are typically associated to large SEs.

Consequently, empirical distributions are imprecise (very ‘bumpy’).

True even when sample size seems large (e.g., a few 1000s!).

Smoothing allows approximating empirical distributions (and equipercentile
relationships) based on the main distribution trend, removing sample-based
irregularities.

Risk
Smoothed empirical distributions may be poor approximations of the true
(population) distribution (i.e., systematic equating error).

Goal

Achieve more precise and stable equating relations (not so
sample-dependant).

Strike a balance between accuracy and parsimony.

Thus, the reduction of random error is expected to offset the possible
introduction of systematic error.
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Equating under the random groups design (classic methods)

Equipercentile equating – Smoothing

Two types of smoothing:

Presmoothing Smooth the score distributions first and then equate.

Postsmoothing Equate first, and then smooth the equipercentile equated scores.

Popular smoothing methods include:

Polynomial log-linear presmoothing.

Cubic spline postsmoothing.

Kernel smoothing (not so efficient as the previous two).

Strong true score method (requires specification of distributional form of true
scores). Lord’s beta4 method.
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Equating under the NEAT design (classic methods)

Equating under the NEAT design (classic methods)

Several methods, linear (L) and nonlinear (NL):

Tucker method (L).

Levine observed score method (L).

Levine true score method (L).

Chained linear equating (L).

Equipercentile methods (NL): (Modified) frequency estimation method,
chained equipercentile equating.

Notation:

Form X New form, taken by Population 1

Form Y Old form, taken by Population 2

V Common-item set (anchor items)

eqY (x) Equating function that converts scores on Form X to the scale of
Form Y.
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Equating under the NEAT design (classic methods)

Equating under the NEAT design (classic methods)

General form of the linear equating function:

eqY (x) = y =
σs(Y )

σs(X )︸ ︷︷ ︸
A

x +

[
µs(Y )− σs(Y )

σs(X )
µs(X )

]
︸ ︷︷ ︸

B

.

= Ax + B, a straight line

The subscript ‘s ’ denotes a synthetic population, which is a weighted population
derived from Population 1 and Population 2:

w1 + w2 = 1, with w1,w2 ≥ 0.

Mathematically, the difference between the Tucker, the Levine observed
score, the Levine true score, and the chained linear methods is the
computational formulas for A and B above (not shown here).

Statistically, different equating methods are based on different model
assumptions.
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Equating using IRT

Equating using IRT

Three steps are typically followed:

1. Fit IRT model to data.

2. Linearly transform IRT parameter estimates to a base scale.

3. Convert scores on Form X to the scale of Form Y.
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Equating using IRT

Equating using IRT – Step 1 (Fit IRT model to data)

For dichotomous scores use the common 1PLM, 2PLM, or 3PLM.
Assumptions: Unidimensionality, monotonicity, local independence.

P(Xi = 1|θn) = ci +
1− ci

1 + exp [−ai (θn − bi )]
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Equating using IRT

Equating using IRT – Step 2 (Transform IRT parameters)

Fact: The 3PLM model is invariant under linear transformation of θ.
Consequence: IRT parameter estimates from different test forms are on different
IRT scales. This is relevant under the NEAT design.

Example: Suppose A = .5, B = 2.

Form X Form Y
ai bi θn ci Pi (θn) ai/A A× bi + B A× θn + B ci
1 0 1 .25 .80 2 2 2.5 .25
2 1 −1 .20 .21 4 2.5 1.5 .20

1.6 −1 0 .18 .86 3.2 1.5 2 .18

Step 2 takes care of removing this IRT scale difference between item
parameter estimates from different forms.

Find suitable constants A,B that do the job.
(The methods available include: Mean/sigma, mean/mean, Haebara, Stocking-Lord

transformations.)

This is called calibration.
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Equating using IRT

Equating using IRT – Step 3 (Convert scores X → Y.)

Surprisingly, θ estimates (θ̂) from the 3PLM are not used directly to perform
equating. Reasons:

The number-correct (NC) score is not a sufficient statistic for θ. That is,
different response patters with the same NC score may imply different θ
values. This is hard to convey to test takers.
θ̂ is difficult to get (unlike NC scores).

The precision of θ̂ is low on the extremes (and high in the middle).

NC scores are commonly used instead.

Methods available to convert NC scores include:

IRT true score equating – Based on IRT’s NC true score:

τX (θn) =
∑
i

P(Xi = 1|θn; ai , bi , ci )

IRT observed score equating – Equipercentile equating based on IRT-derived
distributions of observed NC scores on each form.
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Standard errors of equating

Standard errors of equating

The focus is on random error (due to sampling), not on systematic error (due
to the equating method used).

N increases ⇒ random error decreases.

Bootstrap is the method of choice to estimate random error, although
analytic formulas also exist.

As to be expected,
Standard error of equating (SEE) = SD of the equating parameter of interest
over many replications of the equating procedure (on random samples of
equal size).

SEEs are conditional on scores on Form X.
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Choosing among equating methods

Choosing among equating methods

There is no uniformly best equating method. Many factors influence the
choice of the ‘best’ equating model.

Below are some rough guidelines.

Identity equating
Very (too) small samples, similar test form difficulties, assumptions of other
methods bluntly violated.

Mean, linear equating
Small sample size, similar test form difficulties, precision close to mean values
required.

Nonlinear equating (equipercentile, 3PLM IRT)
Large(ish) sample sizes, test forms can differ in difficulty, common items need to
be representative of entire test, relationship not linear, precision along all score
scale.
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Sample size requirements

Sample size requirements

Simple rules of thumb (random groups and NEAT designs):

∼ 400 per form for linear equating and 1PLM IRT equating

∼ 1, 500 per form for equipercentile equating and 3PLM IRT equating

For really small samples (say, < 100), specific methods have been developed:

Equipercentile equating with smoothing (Livingston, 1993).

Circle-arc equating (Livingston & Kim, 2009).

Synthetic link function equating (Kim, von Davier, & Haberman, 2008).

Equating using collateral information (Livingston & Lewis, 2009).

Nominal weights equating (Babcock, Albano, & Raymond, 2012).
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Empirical example

Empirical example

Analysis done by Andrea Stoevenbelt (manually and using ‘equate’ in R).

Data Biopsychology exam 2013, 2015.

Design Nonequivalent groups common items (NEAT).
80 items per exam, 34 common items.

Equating methods used: Linear only (Tucker, Levine observed
score, Levine true score, chained linear equating).

Descriptive statistics
Group N I Score µ̂ σ̂

2013 349
46 Total score 63.07 10.23
34 Common-items score 26.25 5.18

2015 384
46 Total score 63.71 8.37
34 Common-items score 26.72 4.52

Note: As the descriptives suggest, hardly any equating seems needed in this case.
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Empirical example

Empirical example

Results linear equating
Equating method Intercept Slope
Tucker 4.60 0.92
Levine observed score 2.64 0.95
Levine true score 2.96 0.95
Chained linear equating 3.68 0.94

The linear equating functions are virtually indistinguishable.
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Empirical example

Empirical example

Some conclusions:

Very small differences between scores on 2015 exam and equivalent 2013
scores.

Equated scores for X ≤ 30 were unreliable due to extrapolation.
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Empirical example

For more information. . .

Albano, A. D. (2016). equate: An R package for observed-score linking and
equating. Journal of Statistical Software, 74, 1-36.

Holland, P. W. & Dorans, N. J. (2006). Linking and equating. In R. L. Brennan
(Ed.), Educational measurement (4th ed., pp. 187-220). Greenwood, Westport.

Kolen, M. J., & Brennan, R. L. (2014). Test equating, scaling, and linking:
Methods and practices (3rd Ed.). Springer Verlag: New York, NY.
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